Graphical Abstract Figure

Sensitivity analysis of the model depth in terms of minimum validation loss reached

Graphical Abstract Figure

Sensitivity analysis of the model depth in terms of minimum validation loss reached

Close modal

Abstract

The introduction of hydrogen–methane blends as fuel in gas turbines raises concerns on the capability of state-of-art ventilation systems to dilute possible fuel leaks in the enclosures. Traditional numerical methods to perform leak analysis are limited by the number of factors involved, i.e., location and direction of the leak, cross section area, gas pressure in the pipelines, gas composition, and location of external objects. Hence, this raises the need for novel and fast tools capable for the accurate prediction of fuel dispersion in leak scenarios. To this extent, we propose a novel machine learning approach to model gas leaks. The model is trained on a dataset of numerical simulations accounting for several hydrogen/methane concentrations in the fuel, different storage to ambient pressure ratios at the leak section, and a set of cross-flow ventilation velocities. The architecture of the machine learning model is based on graph neural networks, to solve a node-level regression task predicting fuel concentration in space for different high-pressure leak scenarios. The model shows a significant speed up in predicting fuel dispersion with respect to conventional methodology (0.1 s vs 3.5 h) but the GPU memory requirements proved to be a problem when dealing with 3D domains.

References

1.
Koytsoumpa
,
E. I.
,
Bergins
,
C.
,
Buddenberg
,
T.
,
Wu
,
S.
, and
Kakaras
,
E.
,
2016
, “
The Challenge of Energy Storage in Europe: Focus on Power to Fuel
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p.
042002
.
2.
Tetteh
,
D. A.
, and
Salehi
,
S.
,
2022
, “
The Blue Hydrogen Economy: A Promising Option for the Near-to-Mid-Term Energy Transition
,”
ASME J. Energy Resour. Technol.
,
145
(
4
), p.
042701
.
3.
Vivanco-Martín
,
B.
, and
Iranzo
,
A.
,
2023
, “
Analysis of the European Strategy for Hydrogen: A Comprehensive Review
,”
Energies
,
16
(
9
), p.
3866
.
4.
Yang
,
F.
,
Wang
,
T.
,
Deng
,
X.
,
Dang
,
J.
,
Huang
,
Z.
,
Hu
,
S.
,
Li
,
Y.
, and
Ouyang
,
M.
,
2021
, “
Review on Hydrogen Safety Issues: Incident Statistics, Hydrogen Diffusion, and Detonation Process
,”
Int. J. Hydrogen Energy
,
46
(
61
), pp.
31467
31488
.
5.
Cerbarano
,
D.
,
Tieghi
,
L.
,
Delibra
,
G.
,
Lo Schiavo
,
E.
,
Minotti
,
S.
, and
Corsini
,
A.
,
2024
, “
Characterization of High-Pressure Hydrogen Leakages
,”
ASME J. Eng. Gas Turbines Power
,
146
(
5
), p.
051019
.
6.
Santon
,
R. C.
,
Ivings
,
M. J.
, and
Pritchard
,
D. K.
,
2005
, “
A New Gas Turbine Enclosure Ventilation Design Criterion
,”
Turbo Expo: Power for Land, Sea, and Air. Volume 5: Turbo Expo 2005
, pp.
445
452
.
7.
Corsini
,
A.
,
Delibra
,
G.
,
Minotti
,
S.
, and
Rossin
,
S.
,
2015
, “
Numerical Assessment of Fan-Ducting Coupling for Gas Turbine Ventilation Systems
.”
Turbo Expo: Power for Land, Sea, and Air. Volume 1: Aircraft Engine; Fans and Blowers; Marine
, p. V001T09A005.
8.
Franquet
,
E.
,
Perrier
,
V.
,
Gibout
,
S.
, and
Bruel
,
P.
,
2015
, “
Free Underexpanded Jets in a Quiescent Medium: A Review
,”
Prog. Aerosp. Sci.
,
77
, pp.
25
53
.
9.
Ivings
,
M.
,
Lea
,
C.
,
Ledin
,
H.
, and
Health and Safety Laboratory (Great Britain)
2004
,
Outstanding Safety Questions Concerning the Analysis of Ventilation and Gas Dispersion in Gas Turbine Enclosures: Best Practice Guidelines for CFD
,
Health and Safety Laboratory
,
Bruxton, Derbyshire, UK
.
10.
Birch
,
A.
,
Brown
,
D.
,
Dodson
,
M.
, and
Swaffield
,
F.
,
1984
, “
The Structure and Concentration Decay of High Pressure Jets of Natural Gas
,”
Combust. Sci. Technol.
,
36
(
5–6
), pp.
249
261
.
11.
Ewan
,
B. C. R.
, and
Moodie
,
K.
,
1986
, “
Structure and Velocity Measurements in Underexpanded Jets
,”
Combust. Sci. Technol.
,
45
(
5–6
), pp.
275
288
.
12.
Papanikolaou
,
E.
,
Baraldi
,
D.
,
Kuznetsov
,
M.
, and
Venetsanos
,
A.
,
2012
, “
Evaluation of Notional Nozzle Approaches for CFD Simulations of Free-Shear Under-Expanded Hydrogen Jets
,”
Int. J. Hydrogen Energy
,
37
(
23
), pp.
18563
18574
.
13.
Chen
,
C. J.
, and
Rodi
,
W.
,
1980
, “
Vertical Turbulent Buoyant Jets: A Review of Experimental Data
,”
NASA Sti/Recon Tech. Rep. A
,
80
, p.
23073
.
14.
Corsini
,
A.
,
Delibra
,
G.
,
Minotti
,
S.
, and
Rossin
,
S.
,
2015
, “
Cfd Analysis of Ventilation Systems for Gas Turbine Enclosures
,”
FAN 2015-International Conference on Fan Noise, Technology and Numerical Methods
,
Lyon, France
, Institution of Mechanical Engineers.
15.
Corsini
,
A.
,
Delibra
,
G.
,
Minotti
,
S.
, and
Rossin
,
S.
,
2015
, “
Numerical Assessment of Fan-Ducting Coupling for Gas Turbine Ventilation Systems
,”
Turbo Expo: Power for Land, Sea, and Air
, Vol.
56628
,
Montreal, Quebec, Canada
,
June 15–19
,
American Society of Mechanical Engineers
, p.
V001T09A005
.
16.
Liu
,
J.
,
Huang
,
Q.
,
Ulishney
,
C.
, and
Dumitrescu
,
C. E.
,
2022
, “
Comparison of Random Forest and Neural Network in Modeling the Performance and Emissions of a Natural Gas Spark Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
144
(
3
), p.
032310
.
17.
Hoque
,
K. E.
,
Hossain
,
T.
,
Haque
,
A. M.
,
Miah
,
M. A. K.
, and
Haque
,
M. A.
,
2024
, “
NOx Emission Predictions in Gas Turbines Through Integrated Data-Driven Machine Learning Approaches
,”
ASME J. Energy Resour. Technol.
,
146
(
7
), p.
071201
.
18.
Vargas
,
G. G.
,
Ortiz
,
P. S.
, and
de Oliveira
,
S. J.
,
2024
, “
Performance Analysis of Waste Biomass Gasification and Renewable Hydrogen Production by Neural Network Algorithm
,”
ASME J. Energy Resour. Technol.
,
146
(
5
), p.
052701
.
19.
Brunton
,
S. L.
,
Noack
,
B. R.
, and
Koumoutsakos
,
P.
,
2020
, “
Machine Learning for Fluid Mechanics
,”
Annu. Rev. Fluid Mech.
,
52
, pp.
477
508
.
20.
Tieghi
,
L.
,
Corsini
,
A.
,
Delibra
,
G.
, and
Angelini
,
G.
,
2020
, “
Assessment of a Machine-Learnt Adaptive Wall-Function in a Compressor Cascade With Sinusoidal Leading Edge
,”
ASME J. Eng. Gas Turbines Power
,
142
(
12
), p.
121011
.
21.
Tieghi
,
L.
,
Corsini
,
A.
,
Delibra
,
G.
, and
Tucci
,
F. A.
,
2021
, “
A Machine-Learnt Wall Function for Rotating Diffusers
,”
ASME J. Turbomach.
,
143
(
8
), p.
081012
.
22.
Vinuesa
,
R.
, and
Brunton
,
S. L.
,
2021
, “
The Potential of Machine Learning to Enhance Computational Fluid Dynamics
.” Preprint arXiv:2110.02085, pp.
1
13
.
23.
Mendez
,
M. A.
,
Dominique
,
J.
,
Fiore
,
M.
,
Pino
,
F.
,
Sperotto
,
P.
, and
Berghe
,
J.
,
2022
, “Challenges and Opportunities for Machine Learning in Fluid Mechanics.” Preprint arXiv:2202.12577.
24.
Corsini
,
A.
,
Delibra
,
G.
,
Giovannelli
,
M.
,
Lucherini
,
G.
,
Minotti
,
S.
,
Rossin
,
S.
, and
Tieghi
,
L.
,
2019
, “
Identification of Poorly Ventilated Zones in Gas-Turbine Enclosures With Machine Learning
,”
Phoenix, AZ
, p.
V001T09A003
.
25.
Hassanzadeh
,
H.
,
Joshi
,
S.
, and
Taghavi
,
S. M.
,
2023
, “
Predicting Buoyant Jet Characteristics: A Machine Learning Approach
,”
Chem. Product Process Model
,
19
, pp.
163
177
.
26.
Milani
,
P. M.
,
Ling
,
J.
, and
Eaton
,
J. K.
,
2021
, “
Turbulent Scalar Flux in Inclined Jets in Crossflow: Counter Gradient Transport and Deep Learning Modelling
,”
J. Fluid Mech.
,
906
, p.
A27
.
27.
Weatheritt
,
J.
,
Sandberg
,
R. D.
,
Ling
,
J.
,
Saez
,
G.
, and
Bodart
,
J.
,
2017
, “
A Comparative Study of Contrasting Machine Learning Frameworks Applied to RANS Modeling of Jets in Crossflow
,”
Turbo Expo: Power for Land, Sea, and Air. Volume 2B: Turbomachinery
, p. V02BT41A012.
28.
Bhatnagar
,
S.
,
Afshar
,
Y.
,
Pan
,
S.
,
Duraisamy
,
K.
, and
Kaushik
,
S.
,
2019
, “
Prediction of Aerodynamic Flow Fields Using Convolutional Neural Networks
,”
Comput. Mech.
,
64
, pp.
525
545
.
29.
Obiols-Sales
,
O.
,
Vishnu
,
A.
,
Malaya
,
N.
, and
Chandramowliswharan
,
A.
,
2020
, “
CFDNet: A Deep Learning-Based Accelerator for Fluid Simulations
,” Association for Computing Machinery, New York, pp.
1
12
.
30.
Guo
,
X.
,
Li
,
W.
, and
Iorio
,
F.
,
2016
, “
Convolutional Neural Networks for Steady Flow Approximation
,” Association for Computing Machinery, New York, pp.
481
490
.
31.
Gao
,
H.
,
Sun
,
L.
, and
Wang
,
J.-X.
,
2021
, “
Phygeonet: Physics-Informed Geometry-Adaptive Convolutional Neural Networks for Solving Parameterized Steady-State Pdes on Irregular Domain
,”
J. Comput. Phys.
,
428
, p.
110079
.
32.
Saetta
,
E.
,
Tognaccini
,
R.
, and
Iaccarino
,
G.
,
2022
, “
Machine Learning to Predict Aerodynamic Stall
,”
Inter. J. Comput. Fluid Dyn.
,
36
(
7
), pp.
641
654
.
33.
Thuerey
,
N.
,
Weißenow
,
K.
,
Prantl
,
L.
, and
Hu
,
X.
,
2020
, “
Deep Learning Methods for Reynolds-Averaged Navier–Stokes Simulations of Airfoil Flows
,”
AIAA J.
,
58
(
1
), pp.
25
36
.
34.
Ronneberger
,
O.
,
Fischer
,
P.
, and
Brox
,
T.
,
2015
, “
U-net: Convolutional Networks for Biomedical Image Segmentation
,” pp.
234
241
.
35.
Zhou
,
J.
,
Cui
,
G.
,
Hu
,
S.
,
Zhang
,
Z.
,
Yang
,
C.
,
Liu
,
Z.
,
Wang
,
L.
,
Li
,
C.
, and
Sun
,
M.
,
2020
, “
Graph Neural Networks: A Review of Methods and Applications
,”
AI Open
,
1
, pp.
57
81
.
36.
Kipf
,
T. N.
, and
Welling
,
M.
,
2016
, “Semi-Supervised Classification With Graph Convolutional Networks.” Preprint arXiv:1609.02907.
37.
Sanchez-Gonzalez
,
A.
,
Godwin
,
J.
,
Pfaff
,
T.
,
Ying
,
R.
,
Leskovec
,
J.
, and
Battaglia
,
P.
,
2020
, “
Learning to Simulate Complex Physics With Graph Networks
,” Proceedings of the 37th International Conference on Machine Learning, pp.
8459
8468
.
38.
Belbute-Peres
,
F. D. A.
,
Economon
,
T.
, and
Kolter
,
Z.
,
2020
, “
Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid Flow Prediction
,” Proceedings of the 37th International Conference on Machine Learning, July 13–18, PMLR, pp.
2402
2411
.
39.
Pfaff
,
T.
,
Fortunato
,
M.
,
Sanchez-Gonzalez
,
A.
, and
Battaglia
,
P. W.
,
2020
, “
Learning Mesh-Based Simulation With Graph Networks
.” Preprint arXiv:2010.03409.
40.
Blechschmidt
,
D.
, and
Mimic
,
D.
,
2023
, “
A Machine Learning Approach for the Prediction of Time-averaged Unsteady Flows in Turbomachinery
, ” Volume 13D: Turbomachinery—Multidisciplinary Design Approaches, Optimization, and Uncertainty Quantification; Radial Turbomachinery Aerodynamics; Unsteady Flows in Turbomachinery, p.
V13DT36A023
.
41.
Bonnet
,
F.
,
Mazari
,
J.
,
Cinnella
,
P.
, and
Gallinari
,
P.
,
2022
, “
Airfrans: High Fidelity Computational Fluid Dynamics Dataset for Approximating Reynolds-Averaged Navier–Stokes Solutions
,”
Adv. Neural Inform. Process. Syst.
,
35
, pp.
23463
23478
.
42.
Hamilton
,
W.
,
Ying
,
Z.
, and
Leskovec
,
J.
,
2017
, “
Inductive Representation Learning on Large Graphs
,”
Adv. Neural Inform. Process. Syst.
,
30
, pp.
1025
1035
.
43.
Gao
,
H.
, and
Ji
,
S.
,
2019
, “
Graph u-Nets
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
44
, pp.
4948
4960
.
44.
Chen
,
T.
, and
Guestrin
,
C.
,
2016
, “
Xgboost: A Scalable Tree Boosting System
,”
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
,
San Francisco, CA
, pp.
785
794
.
45.
Bishop
,
C. M.
, and
Nasrabadi
,
N. M.
,
2006
,
Pattern Recognition and Machine Learning
, Vol.
4
,
Springer
,
New York
.
46.
Goodfellow
,
I.
,
Bengio
,
Y.
, and
Courville
,
A.
,
2016
,
Deep Learning
,
MIT Press
,
Cambridge, MA
.
47.
Chen
,
Y.
,
Wang
,
K.
,
Liao
,
X.
,
Qian
,
Y.
,
Wang
,
Q.
,
Yuan
,
Z.
, and
Heng
,
P.-A.
,
2019
, “
Channel-Unet: A Spatial Channel-Wise Convolutional Neural Network for Liver and Tumors Segmentation
,”
Front. Genetics
,
10
, p.
1110
.
48.
Garcia-Uceda Juarez
,
A.
,
Selvan
,
R.
,
Saghir
,
Z.
, and
de Bruijne
,
M.
,
2019
, “
A Joint 3D Unet-Graph Neural Network-Based Method for Airway Segmentation From Chest CTS
,”
Machine Learning in Medical Imaging: 10th International Workshop, MLMI 2019, Held in Conjunction with MICCAI 2019
,
Shenzhen, China
,
Oct. 13
,
Springer
, pp.
583
591
.
49.
Pope
,
S. B.
,
2001
, “
Turbulent Flows
,”
Meas. Sci. Technol.
,
12
(
11
), pp.
2020
2021
.
50.
Imambi
,
S.
,
Prakash
,
K. B.
, and
Kanagachidambaresan
,
G.
,
2021
, “
Pytorch
.”
Programming With TensorFlow: Solution for Edge Computing Applications
, pp.
87
104
.
51.
Fey
,
M.
, and
Lenssen
,
J. E.
,
2019
, “Fast Graph Representation Learning With Pytorch Geometric.” Preprint arXiv:1903.02428.
52.
Ruggles
,
A. J.
, and
Ekoto
,
I. W.
,
2012
, “
Ignitability and Mixing of Underexpanded Hydrogen Jets
,”
Int. J. Hydrogen Energy
,
37
(
22
), pp.
17549
17560
.
53.
Santon
,
R. C.
,
Kidger
,
J. W.
, and
Lea
,
C. J.
,
2002
, “
Safety Developments in Gas Turbine Power Applications
,”
Turbo Expo: Power for Land, Sea, and Air. Volume 1: Turbo Expo 2002
, pp.
959
966
.
54.
Sullivan
,
C.
, and
Kaszynski
,
A.
,
2019
, “
Pyvista: 3d Plotting and Mesh Analysis Through a Streamlined Interface for the Visualization Toolkit (vtk)
,”
J. Open Source Soft.
,
4
(
37
), p.
1450
.
55.
Kaler
,
T.
,
Stathas
,
N.
,
Ouyang
,
A.
,
Iliopoulos
,
A.-S.
,
Schardl
,
T.
,
Leiserson
,
C. E.
, and
Chen
,
J.
,
2022
, “
Accelerating Training and Inference of Graph Neural Networks With Fast Sampling and Pipelining
,”
Proc. Mach. Learn. Syst.
,
4
, pp.
172
189
.
56.
Kaler
,
T.
,
Iliopoulos
,
A.
,
Murzynowski
,
P.
,
Schardl
,
T.
,
Leiserson
,
C. E.
, and
Chen
,
J.
,
2023
, “
Communication-Efficient Graph Neural Networks With Probabilistic Neighborhood Expansion Analysis and Caching
,”
Proc. Mach. Learn. Syst.
,
5
.
57.
Raissi
,
M.
,
2018
, “
Deep Hidden Physics Models: Deep Learning of Nonlinear Partial Differential Equations
,”
J. Mach. Learn. Res.
,
19
(
1
), pp.
932
955
.
58.
Peng
,
J.-Z.
,
Hua
,
Y.
,
Li
,
Y.-B.
,
Chen
,
Z.-H.
,
Wu
,
W.-T.
, and
Aubry
,
N.
,
2023
, “
Physics-Informed Graph Convolutional Neural Network for Modeling Fluid Flow and Heat Convection
,”
Phys. Fluids
,
35
(
8
).
You do not currently have access to this content.