Abstract

This study is aimed at the issue of energy waste resulting from significant fluctuations in the energy consumption of the steam turbine system under the flexible peaking demands of coal-fired units. To accurately predict the energy consumption of these units across a wide range of load conditions, the energy consumption prediction model of eXtreme Gradient Boosting (XGBoost) steam turbine system is established. First, the model variables are chosen based on the existing measurements and an analysis of the power plant. Meanwhile, the energy consumption dataset and its distribution are calculated by the consumption rate analysis. Second, the model feature variables are screened by the maximum information coefficient (MIC) and Kendall rank correlation coefficient, and the energy consumption prediction model of the 660 MW steam turbine system based on XGBoost is established. Finally, the Bayesian optimization (BO) algorithm is employed to determine the best hyperparameters of the XGBoost model. Moreover, three energy consumption prediction models of MIC-BO-XGBoost are built for multi-objective prediction: independent modeling, chain modeling 1, and chain modeling 2. Chain modeling 2 is capable of forecasting the energy consumption of the steam turbine system in ultra-supercritical coal-fired units with greater precision under wide variations of load. It can provide the basis for the operation optimization of the steam turbine system of subsequent coal-fired units.

References

1.
Nie
,
X. H.
,
Xue
,
J.
,
Zhao
,
L.
,
Deng
,
S.
, and
Xiong
,
H. P.
,
2024
, “
New Insight of Thermodynamic Cycle in Thermoelectric Power Generation Analyses: Literature Review and Perspectives
,”
Energy
,
292
, p.
130553
.
2.
Hoseinzadeh
,
S.
, and
Heyns
,
P. S.
,
2021
, “
Advanced Energy, Exergy, and Environmental (3E) Analyses and Optimization of a Coal-Fired 400 MW Thermal Power Plant
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
082106
.
3.
Abdel-Hadi
,
A.
,
Salem
,
A. R.
,
Abbas
,
A. I.
,
Qandil
,
M.
, and
Amano
,
R. S.
,
2021
, “
Study of Energy Saving Analysis for Different Industries
,”
ASME J. Energy Resour. Technol.
,
143
(
5
), p.
052101
.
4.
Yi
,
Y. P.
,
Chang
,
L.
,
Wu
,
B. X.
,
Zhao
,
J. J.
,
Peng
,
H.
,
Li
,
L. X.
, and
Wang
,
A. P.
,
2024
, “
Life Cycle Assessment of Energy Storage Technologies for New Power Systems Under Dual-Carbon Target: A Review
,”
Energy Technol.
,
12
(
5
), p.
2301129
.
5.
Li
,
Y.
,
He
,
Y. Y.
, and
Zhang
,
M. Z.
,
2020
, “
Prediction of Chinese Energy Structure Based on Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM)
,”
Energy Sci. Eng.
,
8
(
8
), pp.
2680
2689
.
6.
Yu
,
G. Q.
,
Liu
,
K. T.
,
Hu
,
Z. M.
,
Liu
,
N. N.
, and
Xiao
,
X. Y.
,
2023
, “
Optimal Scheduling of Deep Peak Regulation for Thermal Power Units in Power Grid With Large Scale New Energy
,”
Electric Power Eng. Technol.
,
42
(
1
), pp.
243
250
.
7.
Bisset
,
C.
,
Venter
,
P. V. Z.
, and
Coetzer
,
R.
,
2023
, “
A Systematic Literature Review on Machine Learning Applications at Coal-Fired Thermal Power Plants for Improved Energy Efficiency
,”
Int. J. Sustainable Energy
,
42
(
1
), pp.
845
872
.
8.
Elwardany
,
M.
,
Nassib
,
A. M.
, and
Mohamed
,
H. A.
,
2024
, “
Advancing Sustainable Thermal Power Generation: Insights From Recent Energy and Exergy Studies
,”
Process Saf. Environ. Prot.
,
183
, pp.
617
644
.
9.
Zhang
,
Y. P.
,
Wang
,
J. Z.
,
Yang
,
S. J.
, and
Gao
,
W.
,
2018
, “
An All-Condition Simulation Model of the Steam Turbine System for a 600 MW Generation Unit
,”
J. Energy Inst.
,
91
(
2
), pp.
279
288
.
10.
Blackburn
,
L. D.
,
Tuttle
,
J. F.
,
Andersson
,
K.
,
Fry
,
A.
, and
Powell
,
K. M.
,
2022
, “
Development of Novel Dynamic Machine Learning-Based Optimization of a Coal-Fired Power Plant
,”
Comput. Chem. Eng.
,
163
, p.
107848
.
11.
Matsunaga
,
F.
,
Zytkowski
,
V.
,
Valle
,
P.
, and
Deschamps
,
F.
,
2022
, “
Optimization of Energy Efficiency in Smart Manufacturing Through the Application of Cyber–Physical Systems and Industry 4.0 Technologies
,”
ASME J. Energy Resour. Technol.
,
144
(
10
), p.
102104
.
12.
Chen
,
Y.
,
2022
, “
Analysis of Smart Strategies for Coal-Fired Power Plants With One Million Units
,”
Mod. Ind. Econ. Inf.
,
12
(
07
), pp.
23
25
.
13.
Miao
,
J. J.
,
Li
,
D. B.
, and
Li
,
H. J.
,
2021
, “
Status Quo and Prospect of Boiler Heating Surface Based on Artificial Neural Network
,”
Clean Coal Technol.
,
27
(
S2
), pp.
212
220
.
14.
Thota
,
S.
, and
Basha
,
S. M.
,
2022
, “
Analysis of Feature Selection Techniques for Prediction of Boiler Efficiency in Case of Coal Based Power Plant Using Real Time Data
,”
Int. J. Syst. Assur. Eng. Manage.
,
15
(
1
), pp.
300
313
.
15.
Zhou
,
J.
, and
Zhang
,
W.
,
2023
, “
Coal Consumption Prediction in Thermal Power Units: A Feature Construction and Selection Method
,”
Energy
,
273
, p.
126996
.
16.
Liu
,
H.
,
Wang
,
Y. N.
,
Li
,
X. L.
, and
Yang
,
G. T.
,
2022
, “
Prediction of NOx Emissions of Coal-Fired Power Plants Based on Mutual Information-Graph Convolutional Neural Network
,”
Proc. CSEE
,
42
(
03
), pp.
1052
1060
.
17.
Wang
,
F.
,
Ma
,
S. X.
,
Wang
,
H.
,
Li
,
Y. D.
,
Qin
,
Z. G.
, and
Zhang
,
J. J.
,
2018
, “
A Hybrid Model Integrating Improved Flower Pollination Algorithm-Based Feature Selection and Improved Random Forest for NOx Emission Estimation of Coal-Fired Power Plants
,”
Measurement
,
125
, pp.
303
312
.
18.
Liu
,
Q.
, and
Qin
,
S. Z.
,
2016
, “
Perspectives on Big Data Modeling of Process Industries
,”
Acta Autom. Sin.
,
42
(
2
), pp.
161
171
.
19.
Ma
,
X. J.
,
Zhang
,
J. W.
,
Cheng
,
Z. N.
,
Zhou
,
X. C.
,
Hou
,
Y. X.
, and
Sui
,
Y. Y.
,
2024
, “
Energy Consumption Prediction of Coal-Fired Unit Boiler System Based on Different Operating States
,”
Energy Sources, Part A
,
46
(
1
), pp.
10063
10077
.
20.
Khaleel
,
O. J.
,
Ibrahim
,
T. K.
,
Ismail
,
F. B.
, and
Al-Sammarraie
,
A. T.
,
2021
, “
Developing an Analytical Model to Predict the Energy and Exergy Based Performances of a Coal-Fired Thermal Power Plant
,”
Case Stud. Therm. Eng.
,
28
, p.
101519
.
21.
Jiang
,
J.
,
Gong
,
J.
,
Xu
,
B. C.
,
Zhang
,
Q.
,
Zhu
,
H. Y.
,
Tan
,
P.
, and
Zhang
,
C.
,
2023
, “
Modeling Coal Consumption of Supercritical Thermal Power Units Based on Multilayer Perceptron Neural Network
,”
Clean Coal Technol.
,
29
(
S2
), pp.
611
616
.
22.
Jin
,
Z. Y.
,
Li
,
S. N.
,
Tan
,
P.
,
Yan
,
X. C.
,
Liu
,
Y. N.
,
Zhang
,
C.
, and
Chen
,
G.
,
2021
, “
Multi-parameter Collaborative Prediction Model of Boilers Based on Long-Short-Term Memory Neural Network
,”
Therm. Power Gener.
,
50
(
05
), pp.
120
126
.
23.
Liu
,
F.
, and
Liang
,
C.
,
2024
, “
Short-Term Power Load Forecasting Based on AC-BiLSTM Model
,”
Energy Rep.
,
11
, pp.
11570
11579
.
24.
Wang
,
Z.
,
Zhou
,
H. C.
,
Peng
,
X. Y.
,
Cao
,
S. X.
,
Tang
,
Z. H.
,
Li
,
K. Y.
,
Fan
,
S. Y.
,
Xue
,
W. Y.
,
Yao
,
G. J.
, and
Xu
,
S. M.
,
2024
, “
A Predictive Model With Time-Varying Delays Employing Channel Equalization Convolutional Neural Network for NOx Emissions in Flexible Power Generation
,”
Energy
,
306
, p.
132495
.
25.
Ling
,
D.
,
Li
,
C. S.
,
Wang
,
Y.
, and
Zhang
,
P. Y.
,
2022
, “
Fault Detection and Identification of Furnace Negative Pressure System With CVA and GA-XGBoost
,”
Energies
,
15
(
17
), p.
6355
.
26.
Njoku
,
H. O.
,
Egbuhuzor
,
L. C.
,
Eke
,
M. N.
,
Enibe
,
S. O.
, and
Akinlabi
,
E. A.
,
2019
, “
Combined Pinch and Exergy Evaluation for Fault Analysis in a Steam Power Plant Heat Exchanger Network
,”
ASME J. Energy Resour. Technol.
,
141
(
12
), p.
122001
.
27.
Song
,
Z. P.
,
1992
, “
Consumption Rate Analysis: Theory and Practice
,”
Proc. CSEE
,
12
(
04
), pp.
17
23
.
28.
Cui
,
S. Y.
, and
Wang
,
X. J.
,
2022
, “
Multivariate Load Forecasting in Integrated Energy System Based on Maximal Information Coefficient and Multi-objective Stacking Ensemble Learning
,”
Electric Power Autom. Equip.
,
42
(
5
), pp.
32
39
.
29.
Yang
,
S.
,
Li
,
X. P.
,
Gong
,
Z. Y.
,
Li
,
D. S.
,
Cheng
,
X. L.
, and
Cai
,
W. B.
,
2021
, “
New Principle of Pilot Protection Based on Kendall’s Rank Correlation Coefficient
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
827
(
1
), p.
012016
.
30.
Wan
,
A. P.
,
Chang
,
Q.
,
Khalil
,
A. B.
, and
He
,
J. B.
,
2023
, “
Short-Term Power Load Forecasting for Combined Heat and Power Using CNN-LSTM Enhanced by Attention Mechanism
,”
Energy
,
282
, p.
128274
.
31.
Sameh
,
M.
,
Larbi
,
C. A.
,
Bruno
,
M.
, and
Laurent
,
D.
,
2022
, “
Predicting Energy Consumption Using LSTM, Multi-layer GRU and Drop-GRU Neural Networks
,”
Sensors
,
22
(
11
), pp.
4062
4062
.
32.
Wang
,
R. J.
,
2023
, “
Enhancing Energy Efficiency With Smart Grid Technology: A Fusion of TCN, BiGRU, and Attention Mechanism
,”
Front. Energy Res.
,
11
, p.
1283026
.
33.
Hipple
,
S. M.
,
Bonilla
,
A. H.
,
Pezzini
,
P.
,
Shadle
,
L. J.
, and
Bryden
,
K. M.
,
2020
, “
Using Machine Learning Tools to Predict Compressor Stall
,”
ASME J. Energy Resour. Technol.
,
142
(
7
), pp.
1
42
.
34.
Ji
,
Z. Y.
,
Tao
,
W. H.
, and
Ren
,
J. M.
,
2024
, “
Boiler Furnace Temperature and Oxygen Content Prediction Based on Hybrid CNN, biLSTM, and SE-Net Models
,”
Appl. Intell.
,
54
(
17–18
), pp.
8241
8261
.
35.
Ahmad
,
T.
, and
Chen
,
H. X.
,
2019
, “
Nonlinear Autoregressive and Random Forest Approaches to Forecasting Electricity Load for Utility Energy Management Systems
,”
Sustain. Cities Soc.
,
45
, pp.
460
473
.
36.
Lisicki
,
M.
,
Lubitz
,
W.
, and
Taylor
,
G. W.
,
2016
, “
Optimal Design and Operation of Archimedes Screw Turbines Using Bayesian Optimization
,”
Appl. Energy
,
183
, pp.
1404
1417
.
37.
Dong
,
L. J.
,
Chen
,
D. G.
,
Wang
,
N. L.
, and
Lu
,
Z. H.
,
2020
, “
Key Energy-Consumption Feature Selection of Thermal Power Systems Based on Robust Attribute Reduction With Rough Sets
,”
Inf. Sci.
,
532
, pp.
61
71
.
38.
Chen
,
T. Q.
, and
Guestrin
,
C.
,
2016
, “
XGBoost: A Scalable Tree Boosting System
,”
IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
,
1603
, p.
02754
.
39.
Wu
,
Z. H.
,
Zhou
,
M. B.
,
Lin
,
Z. H.
,
Chen
,
X. J.
, and
Huang
,
Y. H.
,
2021
, “
Improved Genetic Algorithm and XGBoost Classifier for Power Transformer Fault Diagnosis
,”
Front. Energy Res.
,
9
, p.
745744
.
40.
Mei
,
X.
,
Chi
,
H. S.
,
Yue
,
C.
,
Fan
,
J. Y.
, and
Liu
,
Z. Q.
,
2022
, “
Prediction of Aeroengine Vibration Characteristics Based on an MC-XGBoost Model
,”
J. Vib. Shock
,
41
(
16
), pp.
271
277
.
41.
Mathew
,
A.
,
Chikte
,
R.
,
Sadanandan
,
S. K.
,
Abdelaziz
,
S.
,
Ijaz
,
S.
, and
Ghaoud
,
T.
,
2024
, “
Medium-Term Feeder Load Forecasting and Boosting Peak Accuracy Prediction Using the PWP-XGBoost Model
,”
Electric Power Syst. Res.
,
237
, p.
111051
.
42.
Gascon
,
M.
,
Kumar
,
N.
, and
Ghosh
,
R.
,
2020
, “
Predicting Power Plant Equipment Life Using Machine Learning
,”
ASME J. Energy Resour. Technol.
,
142
(
7
), p.
070915
.
You do not currently have access to this content.