The accuracy of boundary-element methods for computing Stokes flow past boundaries with sharp corners where singularities occur is discussed. To resolve the singular behavior, a graded mesh of boundary elements whose length increases in a geometrical fashion with respect to distance from the corners according to a prescribed stretch ratio is used. Numerical results for two-dimensional Stokes flow past bodies with polygonal shapes reveal the existence of an optimal value of the stretch ratio for best accuracy in the computation of the force and torque. When the optimal value is used, fast convergence is achieved with respect to the number of boundary elements.
Issue Section:
Technical Papers
1.
Kelmanson
, M. A.
, 1983
, “Modified Integral Equation Solution of Viscous Flows Near Sharp Corners
,” Comput. Fluids
, 11
, No. 4
, pp. 307
–324
.2.
Kelmanson
, M. A.
, 1983
, “An Integral Equation Method for the Solution of Singular Stokes Flow Problems
,” J. Comput. Phys.
, 51
, pp. 139
–158
.3.
Hansen
, E. B.
, and Kelmanson
, M. A.
, 1994
, “An Integral Equation Justification of the Boundary Conditions of the Driven-Cavity Problem
,” Comput. Fluids
, 23
, No. 1
, pp. 225
–240
.4.
Kelmanson
, M. A.
, and Longsdale
, B.
, 1995
, “Annihilation of Boundary Singularities Via Suitable Green’s Functions
,” Comput. Math. Appl.
, 29
, No. 4
, pp. 1
–7
.5.
Ingber
, M. S.
, and Mitra
, A. K.
, 1986
, “Grid Optimization for the Boundary Element Method
,” Int. J. Numer. Methods Fluids
, 23
, pp. 2121
–2136
.6.
Mackerle
, J.
, 1993
, “Mesh Generation and Refinement for FEM and BEM—A Bibliography (1990–1993)
,” Finite Elem. Anal. Design
, 15
, pp. 177
–188
.7.
Liapis
, S.
, 1994
, “A Review of Error Estimation and Adaptivity in the Boundary-Element Method
,” Eng. Anal. Boundary Elem.
, 14
, No. 4
, pp. 315
–323
.8.
Abe
, K.
, and Sakuraba
, S.
, 1999
, “An HR-Adaptive Boundary Element for Water Free-Surface Problems
,” Eng. Anal. Boundary Elem.
, 23
, pp. 223
–232
.9.
Muci-Ku¨chler
, K. H.
, and Miranda-Valenzuela
, J. C.
, 2001
, “Guest Editorial
,” Eng. Anal. Boundary Elem.
, 25
, pp. 477
–487
.10.
Dean
, W. R.
, and Montagnon
, P. E.
, 1949
, “On the Steady Motion of Viscous Liquid in a Corner
,” Proc. Cambridge Philos. Soc.
, 45
, pp. 389
–394
.11.
Moffatt
, H. K.
, 1964
, “Viscous and Resistive Eddies Near a Sharp Corner
,” J. Fluid Mech.
, 18
, pp. 1
–18
.12.
Pozrikidis, C., 1997, Introduction to Theoretical and Computational Fluid Dynamics Flow, Cambridge University Press.
13.
Pozrikidis, C., 1992, Boundary Integral and Singularity Methods for Linearized Viscous Flow, Cambridge University Press.
14.
Pozrikidis
, C.
, 1999
, “A Spectral-Element Method for Particulate Stokes Flow
,” J. Comput. Phys.
, 156
, pp. 360
–381
.15.
Pozrikidis
, C.
, 2001
, “Dynamical Simulation of the Shear Flow of Suspensions of Particles with Arbitrary Shapes
,” Eng. Anal. Boundary Elem.
, 25
, pp. 19
–30
.16.
Wannier
, G. H.
, 1950
, “A Contribution to the Hydrodynamics of Lubrication
,” Q. Appl. Math.
, 8
, No. 1
, pp. 1
–32
.Copyright © 2002
by ASME
You do not currently have access to this content.