This study explores a quantitative evaluation of blood damage that occurs in a continuous flow left ventricular assist device (LVAD) due to fluid stress. Computational fluid dynamics (CFD) analysis is used to track the shear stress history of 388 particle streaklines. The accumulation of shear and exposure time is integrated along the streaklines to evaluate the levels of blood trauma. This analysis, which includes viscous and turbulent stresses, provides a statistical estimate of possible damage to cells flowing through the pump. Since experimental data for hemolysis levels in our LVAD are not available, in vitro normalized index of hemolysis values for clinically available ventricular assist devices were compared to our damage indices. This approach allowed for an order of magnitude comparison between our estimations and experimentally measured hemolysis levels, which resulted in a reasonable correlation. This work ultimately demonstrates that CFD is a convenient and effective approach to analyze the Lagrangian behavior of blood in a heart assist device.

1.
Noon
,
G. P.
,
Morley
,
D. L.
,
Irwin
,
S.
,
Abdelsayed
,
S. V.
,
Benkowski
,
R. J.
, and
Lynch
,
B. E.
,
2001
, “
Clinical experience with the MicroMed DeBakey ventricular assist device.
Ann. Thorac. Surg.
,
71
(
3
Suppl),
133
8
.
2.
Tamez
,
D.
,
Conger
,
J. L.
,
Jacobs
,
G.
,
Gregoric
,
I.
,
Inman
,
R. W.
,
Radovancevic
,
B. R.
,
Moore
,
S. M.
,
Eya
,
K.
,
Eichstaedt
,
H.
,
Jarvik
,
R.
, and
Frazier
,
O. H.
,
2000
, “
In vivo testing of the totally implantable Jarvik 2000 heart system.
ASAIO J.
,
46
(
2
),
168
168
.
3.
Throckmorton
,
A. L.
,
Allaire
,
P. E.
,
Gutgesell
,
H. G.
,
Matherne
,
G. P.
,
Olsen
,
D. B.
,
Wood
,
H. G.
,
Allaire
,
J. H.
, and
Patel
,
S. M.
,
2002
, “
Pediatric Circulatory Support Systems.
ASAIO J.
,
48
,
216
221
.
4.
Muller, J., Weng, Y., Goettel, P., Nuesser, P., Kilic, A., Arndt, A., Merkel, J., and Hetzer, R., “The First Implantations in Patients of the InCor I Axial Flow Pump with Magnetic Bearings.” 10th Congress of the International Society for Rotary Blood Pumps. Osaka, Japan. 13 September 2002.
5.
Leverett
,
L. B.
,
Hellums
,
J. D.
,
Alfrey
,
C. P.
, et al.
1972
, “
Red blood cell damage by shear stress.
Biophys. J.
,
12
,
257
73
.
6.
Blackshear, P. L., and Blackshear, G. L., Mechanical Hemolysis. In: Skalak, R., Chien, S., eds. Handbook of Bioengineering. New York: McGraw-Hill, 1987, 15.1–9.
7.
Toshitaka
,
Y.
,
Akio
,
F.
,
Fujio
,
M.
, et al.
2001
, “
Influence of static pressure and shear rate on hemolysis of red blood cells.
ASAIO J.
,
47
(
4
),
351
3
.
8.
Richardson
,
E.
,
1975
, “
Application of a theoretical model for hemolysis in shear flow.
Biorheology
,
12
,
12
37
.
9.
Heuser
,
G.
, and
Opitz
,
R.
,
1980
, “
A couette viscometer for short time shearing in blood.
Biorheology
,
17
,
17
24
.
10.
Schima
,
H.
,
Muller
,
M. R.
,
Papantonis
,
D.
, et al.
1992
, “
Minimization of hemolysis in centrifugal blood pump: Influence of different geometries.
Int. J. Artif. Organs
,
16
(
7
),
521
9
.
11.
Yeleswarapu
,
K. K.
,
Antaki
,
J. F.
,
Kameneva
,
M. V.
, et al.
1995
, “
A mathematical model for shear-induced hemolysis.
Artif. Organs
,
19
(
7
),
576
582
.
12.
Bludszuweit
,
C.
,
1995
, “
Model for a general mechanical blood damage prediction.
Artif. Organs
,
19
,
583
589
.
13.
Bludszuweit
,
C.
,
1995
, “
Three-dimensional numerical prediction of stress loading of a blood particles in a centrifugal pump.
Artif. Organs
,
19
,
590
596
.
14.
Song
,
X.
,
Wood
,
H. G.
, and
Olsen
,
D. B.
, “
CFD Study of the 4th Generation Prototype of a Continuous Flow Ventricular Assist Device
,”
ASME J. Biomech. Eng.
,
126
(
2
),
180
-
7
.
15.
Weinicke
,
J. T.
,
Meier
,
D.
,
Mizuguchi
,
K.
, et al.
1995
, “
A fluid dynamic analysis using flow visualization of the Baylor/NASA implantable axial flow blood pump for design improvement.
Artif. Organs
,
19
(
2
),
161
77
.
16.
Pohl
,
M.
,
Samba
,
O.
,
Wendt
,
M. O.
, et al.
1998
, “
Shear stress related hemolysis and its modeling by mechanical degradation of polymer solutions.
Int. J. Artif. Organs
,
21
(
2
),
107
13
.
17.
Yamane
,
T.
,
Asztolos
,
B.
,
Nishida
,
M.
, et al.
1998
, “
Flow visualization as a complementary tool to hemolysis testing in the development of centrifugal blood pump.
Artif. Organs
,
22
(
5
),
375
80
.
18.
Masuzawa
,
T.
,
Tsukiya
,
T.
,
Endo
,
S.
, et al.
1999
, “
Development of design methods for a centrifugal blood pump with a fluid dynamics approach: results in hemolysis tests.
Artif. Organs
,
23
(
8
),
757
61
.
19.
Mitamura
,
Y.
,
Nakamura
,
H.
, and
Sekine
,
K.
,
2000
, “
Prediction of hemolysis in rotary blood pumps with computational fluid dynamics analysis.
J. Congestive Heart Failure Circulatory Support
1
(
4
),
331
336
.
20.
Toshitaka
,
Y.
,
Kenji
,
S.
,
Akio
,
F.
, et al.
2000
, “
An investigation of blood flow behavior and hemolysis in artificial organs.
ASAIO J.
,
46
(
5
),
527
31
.
21.
Anderson
,
J. B.
,
Wood
,
H. G.
,
Allaire
,
P. E.
, et al.
2000
, “
Numerical Studies of Blood Shear and Washing in a Continuous Flow Ventricular Assist Device.
ASAIO J.
,
46
(
4
),
486
94
.
22.
Anderson, J. B., “Computational Flow Analysis of a Ventricular Assist Device.” Master Thesis, School of Engineering and Applied Science, University of Virginia, Charlottesville, Virginia, 1999.
23.
Apel
,
J.
,
Paul
,
R.
,
Klaus
,
S.
, et al.
2001
, “
Assessment of hemolysis related quantities in a microaxial blood pump by computational fluid dynamics.
Artif. Organs
,
25
(
5
),
341
47
.
24.
Wood
,
H. G.
,
Anderson
,
J.
,
Allaire
,
P. E.
,
McDaniel
,
J. C.
, and
Bearnson
,
G.
,
1999
, “
Numerical solution for blood flow in a centrifugal ventricular assist device.
Int. J. Artif. Organs
,
22
,
827
836
.
25.
Pinotti
,
M.
, and
Rosa
,
E. S.
,
1995
, “
Computational prediction of hemolysis in a centrifugal ventricular assist device.
Artif. Organs
,
19
,
267
273
.
26.
Takiura
,
K.
,
Masuzawa
,
T.
,
Endo
,
S.
, et al.
1998
, “
Development of design methods of a centrifugal blood pump with in vitro tests, flow visualization, and computational fluid dynamics: results in hemolysis tests.
Artif. Organs
,
22
,
393
398
.
27.
Thomas
,
D. C.
,
Butler
,
K. C.
,
Taylor
,
L. P.
, et al.
1997
, “
Continued development of the Nimbus/University of Pittsburgh axial flow left ventricular assist system.
ASAIO J.
,
43
,
M564–M566
M564–M566
.
28.
Antaki
,
J. F.
,
Ghattas
,
O.
,
Burgeen
,
G. W.
, and
He
,
B.
,
1995
, “
Computational flow optimization of rotary blood pump components.
Artif. Organs
,
19
,
608
615
.
29.
Allaire
,
P. E.
,
Wood
,
H. G.
,
Awad
,
R. S.
, and
Olsen
,
D. B.
,
1999
, “
Blood flow in a continuous flow ventricular assist device.
Artif. Organs
,
23
,
769
773
.
30.
Miyazoe
,
Y.
,
Sawairi
,
T.
,
Ito
,
K.
, et al.
1998
, “
Computational fluid dynamic analyses to establish design process of centrifugal blood pumps.
Artif. Organs
,
23
,
381
385
.
31.
Blackshear
,
P. L.
,
Dormen
,
F. D.
, and
Steinbach
,
J. H.
,
1965
, “
Some mechanical effects that influence hemolysis.
ASAIO Trans.
,
XI
,
112
117
.
32.
Giersiepen
,
M.
,
Wurzinger
,
L. J.
,
Opitz
,
R.
, and
Reul
,
H.
,
1990
, “
Estimation of shear stress-related blood damage in heart valve prostheses-in vitro comparison of 25 aortic valves.
Int. J. Artif. Organs
,
13
(
5
),
300
306
.
33.
Thomas, H. D. Engineering Design of the Cardiovascular System Mammals. Prentice Hall Inc. 1991.
34.
Day
,
S. W.
,
McDaniel
,
J. C.
,
Wood
,
H. G.
,
Allaire
,
P. E.
,
Landrot
,
N.
, and
Curtas
,
A.
,
2001
, “
Particle image velocimetry measurements of blood velocity in a continuous flow ventricular assist device.
ASAIO J.
,
47
(
4
),
406
411
.
35.
Day
,
S. W.
,
McDaniel
,
J. C.
,
Wood
,
H. G.
,
Allaire
,
P. E.
,
Song
,
X.
,
Lemire
,
P. P.
, and
Miles
,
S. D.
,
2002
, “
A prototype HeartQuest ventricular assist device for particle image velocimetry measurements.
Artif. Organs
26
(
11
),
1002
1005
.
36.
Lemire
,
P. P.
,
McDaniel
,
J. C.
,
Wood
,
H. G.
,
Allaire
,
P. E.
,
Landrot
,
N.
,
Song
,
X.
,
Day
,
S. W.
, and
Olsen
,
D. B.
,
2002
, “
The Application of Quantitative Oil Streaking to the HeartQuest Left Ventricular Assist Device.
Artif. Organs
,
26
(
11
),
971
973
.
37.
Curtas, A. R. “Computational Fluid Testing for the Design and Development of a Heart Assist Pump.” Masters Thesis, University of Virginia, May 2000.
38.
Curtas
,
A. R.
,
Wood
,
H. G.
,
Allaire
,
P. E.
,
McDaniel
,
J. C.
, et al.
2002
, “
CFD Modeling of Impeller Designs for the HeartQuestTM LVAD.
ASAIO J.
,
48
,
552
561
.
39.
Apel
,
J.
,
Neudel
,
F.
, and
Reul
,
H.
,
2001
, “
Computational Fluid Dynamics and Experimental Validation of a Microaxial Blood Pump.
ASAIO J.
,
47
,
552
558
.
40.
Kundu, P. K., and Cohen, I. M., Fluid Mechanics, 2nd Edition. New York: Academic Press, 2002.
41.
Warsi, Z. U. Fluid Dynamics: Theoretical and Computational Approaches, 2nd Edition. Boca Raton: CRC Press, 1999.
42.
Koller
,
T.
, and
Hawrylenko
,
A.
,
1967
, “
Contribution to the in vitro testing of pumps for extracorporeal circulation.
J. Thorac. Cardiovasc. Surg.
,
54
,
22
29
.
43.
Naito
,
K.
,
Mizuguchi
,
K.
, and
Nose
,
Y.
,
1994
, “
The need for standardizing the index of hemolysis.
Artif. Organs
,
18
(
1
),
7
10
.
44.
Kawahito
,
S.
,
Maeda
,
T.
,
Yoshikawa
,
M.
,
Takano
,
T.
,
Nonaka
,
K.
, et al.
2001
, “
Blood trauma induced by clinically accepted oxygenators.
ASAIO J.
,
47
,
492
495
.
45.
Naito
,
K.
,
Suenaga
,
E.
,
Cao
,
Z. L.
,
Suda
,
H.
,
Ueno
,
T.
,
Natsuaki
,
M.
, and
Itoh
,
T.
,
1996
, “
Comparative hemolysis study of clinically available centrifugal pumps.
Artif. Organs
,
20
(
6
),
560
563
.
You do not currently have access to this content.