This paper investigates the effects of surface roughness on the transport and mixing properties in turbulent boundary layers created in an open channel. The measurements were obtained on a smooth and two different types of rough surfaces using a laser Doppler anemometer. The results show that surface roughness enhances the levels of the turbulence kinetic energy, turbulence production, and diffusion over most of the boundary layer. The distributions of the eddy viscosity and mixing length are also strongly modified by surface roughness. Furthermore, the extent to which surface roughness modifies the turbulence structure depends on the specific geometry of the roughness elements.
1.
Cui, J., Patel, V. C., and Lin, C.-L., 2000, “Large-Eddy Simulation of Turbulent Flow Over Rough Surfaces,” IIHR Tech. Report No. 413, Iowa Inst. of Hydr. Res., University of Iowa, USA.
2.
Townsend A. A., 1976, The Structure of Turbulent Shear Flow, Cambridge University Press, Cambridge.
3.
Raupach
, M. R.
, Antonia
, R. A.
, and Rajagopalan
, S.
, 1991
, “Rough-Wall Turbulent Boundary Layers
,” Appl. Mech. Rev.
, 108
, pp. 1
–25
.4.
Krogstad
, P. A.
, and Antonia
, R. A.
, 1999
, “Surface Roughness Effects in Turbulent Boundary Layers
,” Exp. Fluids
, 27
, pp. 450
–460
.5.
Tachie
, M. F.
, Bergstrom
, D. J.
, and Balachandar
, R.
, 2000
, “Rough Wall Turbulent Boundary Layers in Shallow Open Channel Flow
,” ASME J. Fluids Eng.
, 122
, pp. 533
–541
.6.
Ligrani
, P. M.
, and Moffat
, R. J.
, 1985
, “Structure of Transitionally Rough and Fully Rough Turbulent Boundary Layers
,” J. Fluid Mech.
, 162
, pp. 69
–98
.7.
Ligrani
, P. M.
, and Moffat
, R. J.
, 1985
, “Thermal Boundary Layers on a Rough Surface Downstream of Steps in Wall Temperature
,” Boundary-Layer Meteorol.
, 31
, pp. 127
–147
.8.
Mazouz
, A.
, Labraga
, L.
, and Tournier
, C.
, 1998
, “Anisotropy Invariant of Reynolds Stress Tensor in a Duct Flow and Turbulent Boundary Layer
,” ASME J. Fluids Eng.
, 120
, pp. 280
–284
.9.
Tachie, M. F., Bergstrom, D. J., and Balachandar, R., 2002 “The Effect of Wall Roughness on an Open Channel Boundary Layer,” 5th Int. Symp. on Eng. Turbulence Modelling and Measurements, Mallorca, Spain, Rodi, W. and Fueyo, N, eds. pp. 455–453.
10.
Bergstrom
, D. J.
, Kotey
, N. A.
, and Tachie
, M. F.
, 2002
, “The Effects of Surface Roughness on the Mean Velocity Profile in a Turbulent Boundary Layer
,” ASME J. Fluids Eng.
, 124
, pp. 664
–670
.11.
Bakken, O. M., and Krogstad, P.-A., 2001, “Quandrant Analysis of Rough and Smooth Surface Channel Flow,” Turbulence and Shear Flow Phenomena, Second Int. Symp., KTH, Stockholm, Sweden, Lindborg, E., Johanson, A., Eaton, J., Humphrey, J., Kasagi, N., Leschziner, M., and Sommerfield, M., eds. Vol. I, pp. 335–340.
12.
Cebeci
, T.
, and Chang
, K. C.
, 1978
, “Calculation of Incompressible Rough-Wall Boundary-Layer Flows
,” AIAA J.
, 16
(7
), pp. 730
–735
.13.
Krogstad
, P.-A.
, 1991
, “Modification of the van Driest Damping Function to Include the Effects of Surface Roughness
,” AIAA J.
, 29
, pp. 688
–694
.14.
Zhang
, H.
, Faghri
, M.
, and White
, F. M.
, 1996
, “A New Low-Reynolds-Number k-ε Model for Turbulent Flow Over Smooth and Rough Surfaces
,” ASME J. Fluids Eng.
, 118
, pp. 255
–259
.15.
Patel
, V. C.
, 1998
, “Perspective: Flow at High Reynolds Numbers and Over Rough Surfaces-Achilles Heel of CFD
,” ASME J. Fluids Eng.
, 120
, pp. 434
–444
.16.
Durbin
, P. A.
, Medic
, G.
, Seo
, J.-M.
, Eaton
, J. K.
, and Song
, S.
2001
, “Rough Wall Modification of Two-Layer k-ε,
” ASME J. Fluids Eng.
, 123
, pp. 16
–21
.17.
Akinlade, O. G., and Bergstrom, D. J., 2002, “The Prediction of Turbulent Duct Flow With Surface Roughness Using k-ε Models,” 5th Int. Symp. on Eng. Turbulence Modelling and Measurements, Mallorca, Spain, Rodi, W., and Fueyo, N., eds., pp. 197–205.
18.
Tachie, M. F., Open Channel Turbulent Boundary Layers and Wall Jets, 2001, Ph.D. thesis, University of Saskatchewan, Canada.
19.
Krogstad
, P.-A.
, Antonia
, R. A.
, and Browne
, L. W. B.
, 1992
, “Comparison Between Rough- and Smooth-wall Turbulent Boundary Layers
,” J. Fluid Mech.
, 245
, pp. 599
–617
.20.
Nezu
, I.
, and Rodi
, W.
, 1986
, “Open-Channel Flow Measurements With a Laser Doppler Anemometer
,” J. Hydraul. Eng.
, 112
(5
), pp. 335
–355
.21.
Nezu, I., and Nakagawa, H., 1993, Turbulence in Open-Channel Flows, A. A. Balkema, Rotterdam.
22.
George
, W. K.
, and Castillo
, L.
, 1997
, “Zero Pressure Gradient Turbulent Boundary Layer
,” Appl. Mech. Rev.
, 50
(11
), pp. 689
–729
.23.
DeGraaff
, D. B.
, and Eaton
, J. K.
, 2000
, “Reynolds-Number Scaling of the Flat-Plate Turbulent Boundary Layer
,” J. Fluid Mech.
, 422
, pp. 319
–346
.24.
Johnson
, P. L.
, and Barlow
, R. S.
, 1990
, “Effect of Measuring Volume Length on Two-Component Laser Velocimeter Measurements in a Turbulent Boundary Layer
,” Exp. Fluids
, 8
, pp. 137
–144
.25.
Hinze, J. O., 1975, Turbulence. McGraw-Hill, New York.
26.
Rodi
, W.
, Mansour
, N. N.
, and Michelassi
, V.
, 1993
, “One-Equation Near-Wall Turbulence Modeling With the Aid of Direct Simulation Data
,” ASME J. Fluids Eng.
, 115
, pp. 196
–205
.27.
Antonia
, R. A.
, Bisset
, D. K.
, and Kim
, J.
, 1991
, “An Eddy Viscosity Calculation Method for a Turbulent Duct Flow
,” ASME J. Fluids Eng.
, 113
, pp. 616
–619
.28.
Rodi, W., 1991, “Experience With Two-Layer Models Combining the k-ε Model With a One-Equation Model Near the Wall,” AIAA Paper 29-0216, AIAA 29th Aerospace Sciences Meeting, Reno, U.S.A.
29.
Tachie
, M. F.
, Bergstrom
, D. J.
, and Balachandar
, R.
, 2003
, “Roughness Effects in Low-Reθ Open-Channel Turbulent Boundary Layers
,” Exp. Fluids
, 35
, pp. 338
–346
.30.
Antonia
, R. A.
, and Luxton
, R. E.
, 1971
, “The Response of a Turbulent Boundary Layer to a Step Change in Surface Roughness, Part 1. Smooth to Rough
,” J. Fluid Mech.
, 48
, pp. 721
–761
.Copyright © 2004
by ASME
You do not currently have access to this content.