Flow fields within two miniature-scale centrifugal pumps are measured and analyzed to facilitate an understanding of how scaling influences performance. A full-scale pump, of impeller diameter 34.3 mm and blade height 5 mm, and a half-scale version were fabricated from a transparent material to allow optical access. Synchronized particle-image velocimetry (PIV) was performed within the blade passage of each pump. Pressure-flow characteristics, hydrodynamic efficiencies, and high-resolution flow field measurements are reported for six rotational speeds over a Reynolds number range 706–2355. Fluidic phenomena occurring in the impeller passage at both pressure and suction surfaces are identified. Efficiencies are evaluated from direct measurement to be between 10% and 44% and compared with inner efficiencies calculated from the PIV data. Hydrodynamic losses as a percentage of overall efficiency increase from 12% to 55% for 2355Re706. Slip factors, in the range 0.92–1.10, have been derived from velocimetry data.

1.
Rodgers
,
P.
,
Eveloy
,
V.
, and
Pecht
,
M.
, 2005, “
Extending the Limits of Air-Cooling in Microelectronic Equipment
,” Keynote Presentation,
Proceedings of the IEEE EuroSIME
, pp.
695
702
.
2.
Garimella
,
S. V.
,
Joshi
,
Y. K.
,
Bar-Cohen
,
A.
,
Mahajan
,
R.
,
Toh
,
K. C.
,
Carey
,
V. P.
,
Baelmans
,
M.
,
Lohan
,
J.
,
Sammakia
,
B.
, and
Andros
,
F.
, 2002, “
Thermal Challenges in Next Generation Electronic Systems—Summary of Panel Presentations and Discussions
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
25
(
4
), pp.
569
575
.
3.
Singhal
,
V.
,
Garimella
,
S. V.
, and
Raman
,
A.
, 2006, “
Microscale Pumping Technologies for Microchannel Cooling Systems
,”
Appl. Mech. Rev.
0003-6900,
57
(
3
), pp.
191
221
.
4.
Matteucci
,
M.
,
Perennes
,
F
.,
Marmiroli
,
B.
,
Miotti
,
P.
,
Vaccari
,
L.
,
Gosparini
,
A.
,
Turchet
,
A.
, and
Di Fabrizio
,
E.
, 2006, “
Compact Micropumping System Based on LIGA Fabricated Microparts
,”
Microelectron. Eng.
0167-9317,
83
, pp.
1288
1290
.
5.
Lei
,
K. F.
,
Law
,
W. C.
,
Suen
,
Y. -K.
,
Li
,
W. J.
,
Yam
,
Y.
,
Ho
,
H. P.
, and
Kong
,
S. -K.
, 2007, “
A Vortex Pump-Based Optically-Transparent Microfluidic Platform for Biotech and Medical Applications
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
0954-4119,
221
, pp.
129
141
.
6.
Ahn
,
C. H.
, and
Allen
,
M. G.
, 1995 “
Fluid Micropumps Based on Rotary Magnetic Actuators
,”
Micro Electro Mechanical Systems MEMS'95, Proceedings
, IEEE.
7.
Sankovic
,
J. M.
,
Kadambi
,
J. R.
,
Mehta
,
M.
, 2004, “
PIV Investigations of the Flow in the Volute of a Rotary Blood Pump
,”
ASME J. Fluids Eng.
0098-2202,
126
, pp.
730
734
.
8.
Day
,
S. W.
,
Lemire
,
P.
,
Flack
,
R. D.
, and
McDaniel
,
J. C.
, 2003, “
Effect of Reynolds Number on Performance of a Small Centrifugal Pump
,”
Fourth ASME/JSME Joint Fluids Engineering Conference
, Jul. 6–11.
9.
Lorenz
,
M.
, and
Smith
,
W. A.
, 2002, “
Rotodynamic Pump Scaling
,”
ASAIO J.
1058-2916,
48
, pp.
419
430
.
10.
Dong
,
R.
,
Chu
,
S.
, and
Katz
,
J.
, 1992, “
Quantitative Visualization of the Flow Within the Volute of a Centrifugal Pump. Part B: Results and Analysis
,”
ASME J. Fluids Eng.
0098-2202,
114
, pp.
396
403
.
11.
Pedersen
,
N.
,
Larsen
,
P. S.
, and
Jacobsen
,
C. B.
, 2003, “
Flow in a Centrifugal Pump Impeller at Design and Off-Design Conditions—Part 1: Particle Image Velocimetry (PIV) and Laser Doppler Velocimetry (LDV) Measurements
,”
ASME J. Fluids Eng.
0098-2202,
125
, pp.
61
72
.
12.
Paone
,
N.
,
Reithmuller
,
M. L.
and
Van den Braembussche
,
R. A.
, 1989, “
Experimental Investigation of the Flow in the Vaneless Diffuser of a Centrifugal Pump by Particle Image Displacement Velocimetry
,”
Exp. Fluids
0723-4864,
7
, pp.
371
378
.
13.
Stepanoff
,
A. J.
, 1957,
Centrifugal and Axial Flow Pumps: Theory, Design and Application
, 2nd ed.,
Wiley
,
New York
.
14.
EN ISO 5198:
1998, 1999, “
Centrifugal, Mixed Flow and Axial Pumps—Code for Hydraulic Performance Tests—Precision Class
.”
15.
Reithmuller
M. L.
,
Raffel
,
M. R.
,
Kompenhans
,
J.
,
Carosone
,
F.
,
Cenedese
,
A.
,
Bruker
,
Ch.
,
Particle Image Velocimetry, 2003
(
Lecture Series 1996–2003
),
Von Karman Institute for Fluid Dynamics
.
16.
Choi
,
Y. -D.
,
Nishinao
,
K.
,
Kurokawa
,
J.
, and
Matsui
,
J.
, 2004, “
PIV Measurement of Internal Flow Characteristics of Very Low Specific Speed Semi-Open Impeller
,”
Exp. Fluids
0723-4864,
37
, pp.
617
630
.
17.
Tsukiya
,
T.
,
Taenka
,
Y.
,
Tatsumi
,
E.
, and
Takano
,
H.
, 2002, “
Visualization Study of Transient Flow in the Centrifugal Blood Pump Impeller
,”
ASAIO J.
1058-2916,
48
, pp.
431
436
.
18.
Sumer
,
B. M.
,
Christiansen
,
N.
, and
Fredsøe
,
J.
, 1997, “
The Horseshoe Vortex and Vortex Shredding Around Vertical Wall-Mounted Cylinder Exposed to Waves
,”
J. Fluid Mech.
0022-1120,
332
, pp.
41
70
.
19.
Gulich
,
J. P.
, 2008,
Centrifugal Pumps
,
Springer-Verlag
,
Berlin
.
20.
Van den Braembussche
,
R. A.
, 2006, “
Flow and Loss Mechanisms in Volutes of Centrifugal Pumps
,”
Design and Analysis of High Speed Pumps
, pp.
12
-1–12-
26
. Educational Notes RTO-EN-AVT-143, Paper 12.
Neuilly-sur-Seine
,
France
: RTO. Available from: http://www.rto.nato.int/abstracts.asp
21.
Hodson
H. P.
, 2006,
Boundary Layers in Turbomachines
(
Lecture Series 1991–2006
),
Von Karman Institute for Fluid Dynamics
.
You do not currently have access to this content.