The transient two-dimensional flow of a thin Newtonian fluid film over a moving substrate of arbitrary shape is examined in this theoretical study. The interplay among inertia, initial conditions, substrate speed, and shape is examined for a fluid emerging from a channel, wherein Couette–Poiseuille conditions are assumed to prevail. The flow is dictated by the thin-film equations of the “boundary layer” type, which are solved by expanding the flow field in terms of orthonormal modes depthwise and using the Galerkin projection method. Both transient and steady-state flows are investigated. Substrate movement is found to have a significant effect on the flow behavior. Initial conditions, decreasing with distance downstream, give rise to the formation of a wave that propagates with time and results in a shocklike structure (formation of a gradient catastrophe) in the flow. In this study, the substrate movement is found to delay shock formation. It is also found that there exists a critical substrate velocity at which the shock is permanently obliterated. Two substrate geometries are considered. For a continuous sinusoidal substrate, the disturbances induced by its movement prohibit the steady-state conditions from being achieved. However, for the case of a flat substrate with a bump, a steady state exists.

1.
Cheng
,
H. C.
, and
Demekhin
,
E. A.
, 2002,
Complex Wave Dynamics on Thin Films
,
Elsevier
,
New York
.
2.
Khayat
,
R. E.
, and
Welke
,
S.
, 2001, “
Influence of Inertia, Gravity and Substrate Topography on the Two-Dimensional Transient Coating Flow of a Thin Newtonian Fluid Film
,”
Phys. Fluids
1070-6631,
13
(
2
), pp.
355
367
.
3.
Ruschak
,
K. J.
, and
Weinstein
,
S. J.
, 1999, “
Viscous Thin-Film Flow Over a Rounded Crested Weir
,”
ASME J. Fluids Eng.
0098-2202,
121
, pp.
673
677
.
4.
Kalliadasis
,
S.
,
Bielarz
,
C.
, and
Homsy
,
G. M.
, 2000, “
Steady Free-Surface Thin Film Flows Over Topography
,”
Phys. Fluids
1070-6631,
12
(
8
), pp.
1889
1898
.
5.
Stillwagon
,
L. E.
, and
Larson
,
R. G.
, 1988, “
Fundamentals of Topographic Substrate Leveling
,”
J. Appl. Phys.
0021-8979,
63
(
11
), pp.
5251
5258
.
6.
Stillwagon
,
L. E.
, and
Larson
,
R. G.
, 1990, “
Leveling of Thin Films Over Uneven Substrates During Spin Coating
,”
Phys. Fluids A
0899-8213,
2
(
11
), pp.
1937
1944
.
7.
Spaid
,
M. A.
, and
Homsy
,
G. M.
, 1994, “
Viscoelastic Free Surface Flows: Spin Coating and Dynamic Contact Lines
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
55
, pp.
249
281
.
8.
Johnson
,
M. W.
, and
Mangkoesoebroto
,
S.
, 1993, “
Analysis of Lubrication Theory for the Power-Law Fluid
,”
Trans. ASME, J. Tribol.
0742-4787,
115
(
1
), pp.
71
77
.
9.
Tichy
,
J. A.
, 1996, “
Non-Newtonian Lubrication With the Convected Maxwell Model
,”
Trans. ASME, J. Tribol.
0742-4787,
118
, pp.
344
348
.
10.
Ross
,
A. B.
,
Wilson
,
S. K.
, and
Duffy
,
B. R.
, 1999, “
Blade Coating of a Power-Law Fluid
,”
Phys. Fluids
1070-6631,
11
(
5
), pp.
958
970
.
11.
Khayat
,
R. E.
, and
Kim
,
K.
, 2002, “
Influence of Initial Conditions on Transient Two-Dimensional Thin Film Flow
,”
Phys. Fluids
1070-6631,
14
(
12
), pp.
4448
4451
.
12.
Khayat
,
R. E.
, 2000, “
Transient Two-Dimensional Coating Flow of a Viscoelastic Fluid Film on a Substrate of Arbitrary Shape
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
95
, pp.
199
233
.
13.
Kim
,
K.
, and
Khayat
,
R. E.
, 2002, “
Transient Coating Flow of a Thin Non-Newtonian Fluid Film
,”
Phys. Fluids
1070-6631,
14
(
7
), pp.
2202
2215
.
14.
Meyers
,
T. G.
, 1998, “
Thin Films With High Surface Tension
,”
SIAM Rev.
0036-1445,
40
(
3
), pp.
441
462
.
15.
Kriegsmann
,
J. J.
,
Miksis
,
M. J.
, and
Vanden-Broeck
,
J. M.
, 1998, “
Pressure-Driven Disturbances on a Thin Viscous Film
,”
Phys. Fluids
1070-6631,
10
(
6
), pp.
1249
1255
.
16.
Hamrock
,
B. J.
, 1994,
Fundamentals of Fluid Flow Lubrication
,
McGraw-Hill
,
New York
.
17.
Lee
,
J.
, and
Mei
,
C. C.
, 1996, “
Stationary Waves on an Inclined Sheet of Viscous Fluid at High Reynolds and Moderate Weber Numbers
,”
J. Fluid Mech.
0022-1120,
307
, pp.
191
229
.
18.
Omodei
,
B. J.
, 1979, “
Computer Solutions of a Plane Newtonian Jet With Surface Tension
,”
Comput. Fluids
0045-7930,
7
, pp.
79
96
.
19.
Goren
,
S. L.
, and
Wronski
,
S.
, 1966, “
The Shape of Low-Speed Capillary Jets of Newtonian Liquids
,”
J. Fluid Mech.
0022-1120,
25
, pp.
185
198
.
20.
Tillett
,
J. P. K.
, 1968, “
On the Laminar Flow in a Free Jet of Liquid at High Reynolds Numbers
,”
J. Fluid Mech.
0022-1120,
32
, pp.
273
292
.
21.
Zienkiewicz
,
O. C.
, and
Heinrich
,
J. C.
, 1979, “
A Unified Treatment of Steady-State Shallow Water and Two-Dimensional Navier-Stokes Equations—Finite Element Penalty Function Approach
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
17-18
, pp.
673
698
.
22.
Watson
,
E. J.
, 1964, “
The Radial Spreading of a Radial Jet Over a Horizontal Plane
,”
J. Fluid Mech.
0022-1120,
20
, pp.
481
499
.
23.
Middleman
,
S.
, 1995,
Modeling Axisymmetric Flows, Dynamics of Films, Jets, and Drops
,
Academic
,
San Diego, CA
.
24.
Chang
,
H. C.
, 1994, “
Wave Evolution on a Falling Film
,”
Annu. Rev. Fluid Mech.
0066-4189,
26
, pp.
103
136
.
25.
Logan
,
J. D.
, 1994,
An Introduction to Nonlinear Partial Differential Equations
,
Wiley Interscience
,
New York
.
You do not currently have access to this content.