Abstract

In this study, the flow field over three square cylinders (SCs) arranged side by side is investigated in a low-speed wind tunnel. The experiments are performed with three similar SCs for Reynolds number (Re) 295. The influences of spacing ratio on the wake size, drag coefficient, and flow interference of the cylinders are reported with the hotwire anemometry, particle image velocimetry (PIV), and the flow visualization techniques. Special attention is paid to the oscillation given to the middle cylinder and its effect on flow structure and related forces. The spacing ratio (s/D) ranges from 1.5 to 3, whereas the forcing frequency ratio ranges from 0.5 to 2 with amplitude of 10% of the cylinder width. It is observed that the spacing influences the flow structure, and the vortex shedding mechanism strongly. A secondary frequency appears in the flow field for spacing ratio s/D = 2 and 3. Depending upon the spacing ratios, the flow pattern is seen to be asymmetric biased, symmetric biased, and weakly interactive. The wake interaction decreases with increase in spacing ratios. With the oscillations, the wake becomes more unstable and complex. Additional wake oscillation frequency appears in the power spectra. With an increase in spacing ratios, the drag coefficient decreases, whereas with oscillations, higher drag force is observed compared to a stationary cylinder. A correlation is developed between the time-averaged drag coefficient with cylinder spacing and Reynolds number.

References

1.
Kumada
,
M.
,
Hiwada
,
M.
,
Ito
,
M.
, and
Mabuchi
,
I.
,
1984
, “
Wake Interference Between Three Circular Cylinders Arranged Side by Side Normal to a Flow
,”
Trans. JSME
,
50
, pp.
1699
1707
.10.1299/kikaib.50.1699
2.
Kolar
,
V.
,
Lyn
,
D. A.
, and
Rodi
,
W.
,
1997
, “
Ensemble-Averaged Measurements in the Turbulent Near Wake of Two Side by Side Square Cylinders
,”
J. Fluid Mech.
,
346
, pp.
201
237
.10.1017/S0022112097006307
3.
Sumner
,
D.
,
Wong
,
S. S. T.
,
Price
,
S. J.
, and
Paidoussis
,
M. P.
,
1999
, “
Fluid Behavior of Side-by-Side Circular Cylinders in Steady Cross-Flow
,”
J. Fluids Struct.
,
13
(
3
), pp.
309
339
.10.1006/jfls.1999.0205
4.
Zhou
,
Y.
,
So
,
R. M. C.
,
Liu
,
M. H.
, and
Zhang
,
H. J.
,
2000
, “
Complex Turbulent Wakes Generated by Two and Three Side-by-Side Cylinders
,”
Int. J. Heat Fluid Flow
,
21
(
2
), pp.
125
133
.10.1016/S0142-727X(99)00077-6
5.
Zhou
,
Y.
,
2003
, “
Vortical Structures Behind Three Side-by-Side Cylinders
,”
Exp. Fluids
,
34
(
1
), pp.
68
76
.10.1007/s00348-002-0533-5
6.
Agrawal
,
A.
,
Djenidi
,
L.
, and
Antonia
,
R. A.
,
2006
, “
Investigation of Flow Around a Pair of Side-by-Side Square Cylinders Using the Lattice Boltzmann Method
,”
Comp. Fluids
,
35
(
10
), pp.
1093
1107
.10.1016/j.compfluid.2005.05.008
7.
Inoue
,
O.
, and
Suzuki
,
Y.
,
2007
, “
Beat of Sound Generated by Flow Past Three Side-by-Side Square Cylinders
,”
Phys. Fluids
,
19
(
4
), p.
048102
.10.1063/1.2714080
8.
Sewatkar
,
C. M.
,
Sharma
,
A.
, and
Agrawal
,
A.
,
2009
, “
On the Effect of Re for Flow Around a Row of Square Cylinders
,”
Phys. Fluids
,
21
(
8
), p.
083602
.10.1063/1.3210769
9.
Chatterjee
,
D.
,
Biswas
,
G.
, and
Amiroudine
,
S.
,
2010
, “
Numerical Simulation of Flow Past Row of Square Cylinders for Various Separation Ratios
,”
Comp. Fluids
,
39
(
1
), pp.
49
59
.10.1016/j.compfluid.2009.07.002
10.
Bearman
,
P. W.
, and
Obasaju
,
E. D.
,
1982
, “
An Experimental Study of Pressure Fluctuations on Fixed and Oscillating Square-Section Cylinders
,”
J. Fluid Mech.
,
119
, pp.
297
321
.10.1017/S0022112082001360
11.
Ongoren
,
A.
, and
Rockwell
,
D.
,
1988
, “
Flow Structure From an Oscillating Cylinder—Part 1: Mechanism of Phase Shift and Recovery in the Near Wake
,”
J. Fluid Mech.
,
191
(
1
), pp.
197
223
.10.1017/S0022112088001569
12.
Luo
,
S. C.
,
1992
, “
Vortex Wake of a Transversely Oscillating Square Cylinder: A Flow Visualization Analysis
,”
J. Wind Eng. Ind. Aero.
,
45
(
1
), pp.
97
119
.10.1016/0167-6105(92)90008-X
13.
Dutta
,
S.
,
Panigrahi
,
P. K.
, and
Muralidhar
,
K.
,
2007
, “
Sensitivity of a Square Cylinder Wake to Forced Oscillations
,”
ASME J. Fluids Eng.
,
129
(
7
), pp.
852
870
.10.1115/1.2742736
14.
Griffin
,
O. M.
, and
Hall
,
M. S.
,
1991
, “
Review-Vortex Shedding Lock-on and Flow Control in Bluff Body Wakes
,”
ASME J. Fluids Eng.
,
113
(
4
), pp.
526
537
.10.1115/1.2926511
15.
Moon
,
J. S.
, and
Kim
,
J. S.
,
2012
, “
Numerical Analysis of Unsteady Flow Around a Transversely Oscillating Circular Cylinder
,”
Int. J. Aero. Space Sci.
,
13
(
1
), pp.
27
33
.10.5139/IJASS.2012.13.1.27
16.
Chauhan
,
M. K.
,
Dutta
,
S.
,
Gandhi
,
B. K.
, and
More
,
B. S.
,
2016
, “
Experimental Investigation of Flow Over a Transversely Oscillating Square Cylinder at Intermediate Reynolds Number
,”
ASME J. Fluids Eng.
,
138
(
5
), p.
051105
.10.1115/1.4031878
17.
More
,
B. S.
,
Dutta
,
S.
,
Gandhi
,
B. K.
, and
Chauhan
,
M. K.
,
2015
, “
Experimental Investigation of Flow Field Behind Two Tandem Square Cylinders With Oscillating Upstream Cylinder
,”
Exp. Therm. Fluid Sci.
,
68
, pp.
339
358
.10.1016/j.expthermflusci.2015.05.011
18.
Chauhan
,
M. K.
,
Dutta
,
S.
,
More
,
B. S.
, and
Gandhi
,
B. K.
,
2018
, “
Experimental Investigation of Flow Over a Square Cylinder With an Attached Splitter Plate at Intermediate Reynolds Number
,”
J. Fluids Struct.
,
76
, pp.
319
335
.10.1016/j.jfluidstructs.2017.10.012
19.
Okajima
,
A.
,
1982
, “
Strouhal Numbers of Rectangular Cylinders
,”
J. Fluid Mech.
,
123
, pp.
379
398
.10.1017/S0022112082003115
20.
Norberg
,
C.
,
1993
, “
Flow Around Rectangular Cylinders: Pressure Forces and Wake Frequencies
,”
J. Wind Eng. Ind. Aero.
,
49
(
1–3
), pp.
187
196
.10.1016/0167-6105(93)90014-F
21.
Saha
,
A. K.
,
Muralidhar
,
K.
, and
Biswas
,
G.
,
2003
, “
Investigation of Two and Three Dimensional Models of Transitional Flow Past a Square Cylinder
,”
J. Eng. Mech.
,
129
(
11
), pp.
1320
1329
.10.1061/(ASCE)0733-9399(2003)129:11(1320)
22.
Okajima
,
A.
,
1995
, “
Numerical Analysis of the Flow Around an Oscillating Cylinder
,”
Proceedings of the Sixth International Conference on Flow-Induced Vibration
, London, UK, Apr. 10–12, pp.
1
7
.
23.
Yen
,
S. C.
,
San
,
K. C.
, and
Chuang
,
T. H.
,
2008
, “
Interactions of Tandem Square Cylinders at Low Reynolds Numbers
,”
Exp. Therm. Fluid Sci.
,
32
(
4
), pp.
927
938
.10.1016/j.expthermflusci.2007.07.001
24.
Zhang
,
H. J.
, and
Zhou
,
Y.
,
2001
, “
Effect of Unequal Cylinder Spacing on Vortex Streets Behind Three Side-by-Side Cylinders
,”
Phys. Fluids
,
13
(
12
), pp.
3675
3686
.10.1063/1.1412245
25.
Kumar
,
S. R.
,
Sharma
,
A.
, and
Agrawal
,
A.
,
2008
, “
Simulation of Flow Around a Row of Square Cylinders
,”
J. Fluid Mech.
,
606
, pp.
369
397
.10.1017/S0022112008001924
26.
Guillaume
,
D. W.
, and
LaRue
,
J. C.
,
1999
, “
Investigation of the Flopping Regime With Two- Three- and Four-Cylinder Arrays
,”
Exp. Fluids
,
27
(
2
), pp.
145
156
.10.1007/s003480050339
27.
Zheng
,
Q.
, and
Alam
,
M. M.
,
2017
, “
Intrinsic Features of Flow Past Three Square Prisms in Side-by-Side Arrangement
,”
J. Fluid Mech.
,
826
, pp.
996
1033
.10.1017/jfm.2017.378
28.
Sewatkar
,
C. M.
,
Sharma
,
A.
, and
Agrawal
,
A.
,
2011
, “
Simulation of Flow Across a Row of Transversely Oscillating Square Cylinders
,”
J. Fluid Mech.
,
680
, pp.
361
397
.10.1017/jfm.2011.167
29.
Schlichting
,
H.
,
1975
,
Boundary-Layer Theory
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.