Abstract

In order to make use of ocean renewable energy, a combination system of a bidirectional impulse turbine and a bidirectional flow collector for tidal current energy conversion is investigated in this paper. It is the advantage that this turbine system does not need an operation of orientation change according to the reversal of regular tidal orientation when fixed on the seabed. The experimental investigations by using both a circulating water tank and a towing tank showed that the turbine power output could be increased by adopting the flow collector proposed in this study. Then the flow collector with a fixed spiral vane named spiral flow collector was investigated by both a circulating water tank test and computational fluid dynamics (CFD) analysis. The experimental result of the spiral flow collector showed that the performance improvement was found on the increase of axial velocity in the turbine which contributed to the increase of the turbine power output. The results of CFD analysis showed that 180 deg of the skew angle of the fixed spiral vane was suitable in view of the angular moment at the turbine inlet in this case.

References

1.
Melikoglu
,
M.
,
2018
, “
Current Status and Future of Ocean Energy Sources: A Global Review
,”
Ocean Eng.
,
148
, pp.
563
573
.10.1016/j.oceaneng.2017.11.045
2.
IRENA,
2020
,
Innovation Outlook: Ocean Energy Technologies
,
International Renewable Energy Agency
,
Abu Dhabi
.
3.
Fraenkel
,
P. L.
,
2002
, “
Power From Marine Currents
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
216
(
1
), pp.
1
14
.10.1243/095765002760024782
4.
Khan
,
M. J.
,
Bhuyan
,
G.
,
Iqbal
,
M. T.
, and
Quaicoe
,
J. E.
,
2009
, “
Hydrokinetic Energy Conversion Systems and Assessment of Horizontal and Vertical Axis Turbines for River and Tidal Applications: A Technology Status Review
,”
Appl. Energy
,
86
(
10
), pp.
1823
1835
.10.1016/j.apenergy.2009.02.017
5.
Coiro
,
D. P.
,
Daniele
,
E.
, and
Vecchia
,
P. D.
,
2016
, “
Diffuser Shape Optimization for GEM, a Tethered System Based on Two Horizontal Axis Hydro Turbines
,”
Int. J. Mar. Energy
,
13
, pp.
169
179
.10.1016/j.ijome.2015.08.002
6.
Ohya
,
Y.
,
Karasudani
,
T.
,
Nagai
,
T.
, and
Watanabe
,
K.
,
2017
, “
Wind Lens Technology and Its Application to Wind and Water Turbine and Beyond
,”
Renewable Energy Environ. Sustainability
,
2
(
2
), pp.
2
179
.10.1051/rees/2016022
7.
Batten
,
W. M. J.
,
Bahaj
,
A. S.
,
Molland
,
A. F.
, and
Chaplin
,
J. R.
,
2006
, “
Hydrodynamics of Marine Current Turbines
,”
Renewable Energy
,
31
(
2
), pp.
249
256
.10.1016/j.renene.2005.08.020
8.
Bahaj
,
A. S.
,
Molland
,
A. F.
,
Chaplin
,
J. R.
, and
Batten
,
W. M. J.
,
2007
, “
Power and Thrust Measurement of Marine Current Turbines Under Various Hydrodynamic Flow Conditions in a Cavitation Tunnel and a Towing Tank
,”
Renewable Energy
,
32
(
3
), pp.
407
426
.10.1016/j.renene.2006.01.012
9.
Alidadi
,
M. L.
,
2009
, “
Duct Optimization for a Ducted Vertical Axis Hydro Current Turbine
,” Ph.D. Thesis,
The University of British Columbia
,
Vancouver, Canada
.
10.
Patel
,
V.
,
Eldho
,
T. I.
, and
Prabhu
,
S. V.
,
2017
, “
Experimental Investigations on Darrieus Straight Blade Turbine for Tidal Current Application and Parametric Optimization for Hydro Farm Arrangement
,”
Int. J. Mar. Energy
,
17
, pp.
110
135
.10.1016/j.ijome.2017.01.007
11.
Castiglione
,
T.
,
Barbarelli
,
S.
,
Lo Zupone
,
G.
, and
Bova
,
S.
,
2021
, “
Flow-Field and Wake Analysis of Novel Double-Rotor Open-Center Tidal Current Turbine by CFD Simulations
,”
Ocean Eng.
,
222
, p.
108597
.10.1016/j.oceaneng.2021.108597
12.
Samura
,
I.
,
Kuwano
,
K.
,
Kawashima
,
R.
,
Oda
,
T.
,
Imakyurei
,
T.
,
Inoue
,
H.
,
Tokunaga
,
Y.
,
Kanemoto
,
T.
,
Miyagawa
,
K.
,
Miwa
,
T.
, and
Yamanokuchi
,
H.
,
2019
, “
Counter-Rotating Type Tidal Stream Power Unit: Excellent Performance Verified at Offshore Test
,”
IOP Conf. Ser. Earth Environ. Sci.
,
240
, p.
052003
.10.1088/1755-1315/240/5/052003
13.
Baker
,
N. J.
,
Cawthorne
,
S.
,
Hodge
,
E.
, and
Spooner
,
E.
,
2014
, “
3D Modelling of the Generator for OpenHydro's Tidal Energy System
,”
Proceedings of the 7th International Conference on Power Electronics, Machines and Drives
, Manchester, UK, Apr. 8–10, pp.
1
6
.10.1049/cp.2014.0386
14.
Wislicenus
,
G. F.
,
1965
, “
Hydraulic Theory of Cavitation in Turbomachinery
,”
Fluid Mechanics of Turbomachinery
,
Dover Publications
,
New York
, pp.
362
371
.
15.
Schmitz
,
C.
,
Kramer
,
D.
, and
Pelz
,
P.
,
2019
, “
Multipole Optimization of Turbine Arrays in Tidal Flows
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
240
, p.
052008
.10.1088/1755-1315/240/5/052008
16.
Setoguchi
,
T.
,
Kaneko
,
K.
,
Taniyama
,
H.
,
Maeda
,
H.
, and
Inoue
,
M.
,
1996
, “
Impulse Turbine With Self-Pitch-Controlled Guide Vanes for Wave Power Conversion: Guide Vanes Connected by Links
,”
Int. J. Offshore Polar Eng.
,
6
(
1
), pp.
76
80
.
17.
Maeda
,
H.
,
Santhakumar
,
S.
,
Setoguchi
,
T.
,
Takao
,
M.
,
Kinoue
,
Y.
, and
Kaneko
,
K.
,
1999
, “
Performance of an Impulse Turbine With Fixed Guide Vanes for Wave Power Conversion
,”
Renewable Energy
,
17
(
4
), pp.
533
547
.10.1016/S0960-1481(98)00771-X
18.
Setoguchi
,
T.
,
Takao
,
M.
,
Kinoue
,
Y.
,
Kaneko, Santhakumar
,
S.
, and
Inoue
,
M.
,
2000
, “
Study on an Impulse Turbine for Wave Energy Conversion
,”
Int. J. Offshore Polar Eng.
,
10
(
2
), pp.
145
152
.
19.
Setoguchi
,
T.
,
Santhakumar
,
S.
,
Maeda
,
H.
,
Takao
,
M.
, and
Kaneko
,
K.
,
2001
, “
A Review of Impulse Turbine for Wave Energy Conversion
,”
Renewable Energy
,
23
(
2
), pp.
261
292
.10.1016/S0960-1481(00)00175-0
20.
Falcao
,
A. F. O.
,
Whittaker
,
T. J. T.
, and
Lewis
,
A. W.
,
1993
, “
JOULE II Preliminary Action: European Pilot Plant Study
,”
Proceeding of the Euro Wave Energy Symposium
,
Edinburgh, UK, July 21–24
, pp.
247
257
.
21.
Osawa
,
H.
,
Washio
,
Y.
,
Ogawa
,
T.
,
Tsuritani
,
Y.
, and
Nagata
,
Y.
,
2002
, “
The Offshore Floating Type Wave Power Device Mighty Whale Open Sea Test -Performance of the Prototype
,”
Proceeding of the 12th International Offshore and Polar Engineering Conference
, Kitakyushu, Japan, May 26–31, pp.
595
600
.https://onepetro.org/ISOP EIOP EC/proceedings-abstract/ISOP E02/All-ISOP E02/ISOP E-I-02-090/8782
22.
Kinoue
,
Y.
,
Shiomi
,
N.
,
Takao
,
M.
,
Murakami
,
T.
,
Imai
,
Y.
, and
Nagata
,
S.
,
2019
, “
Effect of Hub-to-Tip Ratio on the Performance of Bi-Directional Impulse Turbine With Flow Collector for Tidal Energy Conversion
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
240
, p.
052010
.10.1088/1755-1315/240/5/052010
23.
Nagataki
,
T.
,
Kurokawa
,
K.
,
Yamada
,
R.
,
Sakaguchi
,
D.
, and
Kyozuka
,
Y.
,
2019
, “
Optimization of a Horizontal Axis Tidal Current Turbine by Multi-Objective Optimization
,”
ASME
Paper No. OMAE2019-95829. 10.1115/OMAE2019-95829
24.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
1998
, “
Planning an Experiment General Uncertainty Analysis
,”
Experimentation and Uncertainty Analysis for Engineers
,
Wiley
,
New York
, pp.
47
82
.
25.
Garrett
,
C.
, and
Cummins
,
P.
,
2007
, “
The Efficiency of a Turbine in a Tidal Channel
,”
J. Fluid Mech.
,
588
, pp.
243
251
.10.1017/S0022112007007781
26.
Nishino
,
T.
, and
Willden
,
R. H. J.
,
2012
, “
Effects of 3-D Channel Blockage and Turbulent Wake Mixing on the Limit of Power Extraction by Tidal Turbines
,”
Int. J. Heat Fluid Flow
,
37
, pp.
123
135
.10.1016/j.ijheatfluidflow.2012.05.002
27.
Fleming
,
C. F.
, and
Willden
,
R. H. J.
,
2016
, “
Analysis of Bi-Directional Ducted Tidal Turbine Performance
,”
Int. J. Mar. Energy
,
16
, pp.
162
173
.10.1016/j.ijome.2016.07.003
28.
Stille
,
C. E.
,
1977
, Water Turbine Scale Effect and Efficiency Majoration Methods,
Scaling for Performance Prediction in Rotodynamic Machines
,
I Mech E
,
London
, pp.
13
18
.
You do not currently have access to this content.