Abstract

The high-speed rotation of impellers leads to strong rotor–stator interaction, which mainly causes the pressure pulsation of centrifugal pumps. An impeller with a bionic sinusoidal tubercle trailing edge (STTE) can reduce the intensity of the rotor–stator interaction and thus reduce the pressure pulsation of the centrifugal pump. In this study, three profiles of STTE were designed based on the pectoral fin structure of humpback whales of which the influence on the pressure pulsation of centrifugal pumps was studied via experiment and numerical simulation. Results show that a reasonable design of STTE can effectively eliminate the high-frequency pressure pulsation in the rotor–stator interaction region of the centrifugal pump. The use of STTE2 and STTE3 profiles affect the amplitude reduction of pressure pulsation at the blade passing frequency (fBPF). Compared with the impeller without the STTE profile, the amplitudes of pressure pulsation with STTE2 and STTE3 profiles are decreased by 47.10% and 44.20% at the pump discharge, while the decrease, at the volute throat is 30.36% and 25.97%, respectively. Detailed flow structures inside the pump show that the STTE profile can inhibit the vortex generation at the blade trailing edge, and the local high-intensity pressure pulsation can be reasonably avoided. This study helps improve the pressure pulsation characteristic of centrifugal pumps and their operation stability.

References

1.
Shim
,
H. S.
, and
Kim
,
K. Y.
,
2019
, “
Evaluation of Rotor–Stator Interface Models for the Prediction of the Hydraulic and Suction Performance of a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
141
(
11
), p. 111106. 10.1115/1.4043272
2.
Rodriguez
,
C. G.
,
Egusquiza
,
E.
, and
Santos
,
I. F.
,
2007
, “
Frequencies in the Vibration Induced by the Rotor Stator Interaction in a Centrifugal Pump Turbine
,”
ASME J. Fluids Eng.
,
129
(
11
), pp.
1428
1435
.10.1115/1.2786489
3.
Zhang
,
M.
, and
Tsukamoto
,
H.
,
2005
, “
Unsteady Hydrodynamic Forces Due to Rotor-Stator Interaction on a Diffuser Pump With Identical Number of Vanes on the Impeller and Diffuser
,”
ASME J. Fluids Eng.
,
127
(
4
), pp.
743
751
.10.1115/1.1949640
4.
Keller
,
J.
,
Blanco
,
E.
,
Barrio
,
R.
, and
Parrondo
,
J.
,
2014
, “
PIV Measurements of the Unsteady Flow Structures in a Volute Centrifugal Pump at a High Flow Rate
,”
Exp. Fluids
,
55
(
10
), p.
1820
.10.1007/s00348-014-1820-7
5.
Yang
,
B.
,
Li
,
B.
,
Chen
,
H.
,
Liu
,
Z.
, and
Xu
,
K.
,
2019
, “
Numerical Investigation of the Clocking Effect Between Inducer and Impeller on Pressure Pulsations in a Liquid Rocket Engine Oxygen Turbopump
,”
ASME J. Fluids Eng.
,
141
(
7
), p.
071109
.10.1115/1.4042160
6.
Mosallem
,
M. M.
,
2008
, “
Numerical and Experimental Investigation of Beveled Trailing Edge Flow Fields
,”
J. Hydrodyn.
,
20
(
3
), pp.
273
279
.10.1016/S1001-6058(08)60057-8
7.
Bourgoyne
,
D. A.
,
Ceccio
,
S. L.
, and
Dowling
,
D. R.
,
2005
, “
Vortex Shedding From a Hydrofoil at High Reynolds Number
,”
J. Fluid Mech.
,
531
, pp.
293
324
.10.1017/S0022112005004076
8.
Zhu
,
B.
,
Lei
,
J.
, and
Cao
,
S.
,
2007
, “
Numerical Simulation of Vortex Shedding and Lock-In Characteristics for a Thin Cambered Blade
,”
ASME J. Fluids Eng.
,
129
(
10
), pp.
1297
1305
.10.1115/1.2776964
9.
Yao
,
Z.
,
Wang
,
F.
,
Qu
,
L.
,
Xiao
,
R.
,
He
,
C.
, and
Wang
,
M.
,
2011
, “
Experimental Investigation of Time-Frequency Characteristics of Pressure Fluctuations in a Double-Suction Centrifugal Pump
,”
ASME J. Fluids Eng.
,
133
(
10
), p.
101303
.10.1115/1.4004959
10.
Zeng
,
Y.
,
Yao
,
Z.
,
Wang
,
F.
,
Xiao
,
R.
, and
He
,
C.
,
2020
, “
Experimental Investigation on Pressure Fluctuation Reduction in a Double Suction Centrifugal Pump: Influence of Impeller Stagger and Blade Geometry
,”
ASME J. Fluids Eng.
,
142
(
4
), p.
041202
.10.1115/1.4045208
11.
González
,
J.
, and
Santolaria
,
C.
,
2006
, “
Unsteady Flow Structure and Global Variables in a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
128
(
5
), pp.
937
946
.10.1115/1.2234782
12.
Berten
,
S.
,
Hentschel
,
S.
,
Kieselbach
,
K.
, and
Dupont
,
P.
,
2011
, “
Experimental and Numerical Analysis of Pressure Pulsations and Mechanical Deformations in a Centrifugal Pump Impeller
,”
ASME
Paper No. AJK2011-06057.10.1115/AJK2011-06057
13.
Huang
,
P.
,
Xiao
,
Y.
,
Zhang
,
J.
,
Cai
,
H.
, and
Song
,
H.
,
2020
, “
The Influence of Flow Rates on Pressure Fluctuation in the Pump Mode of Pump-Turbine With Splitter Blades
,”
APPL. Sci-Basel
,
10
(
19
), p.
06752
.
14.
Casimir
,
N.
,
Zhu
,
X.
,
Hundshagen
,
M.
,
Ludwig
,
G.
, and
Skoda
,
R.
,
2020
, “
Numerical Study of Rotor-Stator Interaction of a Centrifugal Pump at Part Load With Special Emphasis on Unsteady Blade Load
,”
ASME J. Fluids Eng.
,
142
(
8
), p.
081203
.10.1115/1.4046622
15.
Li
,
W.
,
Ji
,
L.
,
Shi
,
W.
,
Yang
,
Y.
,
Awais
,
M.
,
Wang
,
Y.
, and
Xu
,
X.
,
2020
, “
Correlation Research of Rotor-Stator Interaction and Shafting Vibration in a Mixed-Flow Pump
,”
J. Low Freq. Noise V. A.
,
39
(
1
), pp.
72
83
.10.1177/1461348419836530
16.
Javadi
,
A.
,
Bosioc
,
A.
,
Nilsson
,
H.
,
Muntean
,
S.
, and
Susan-Resiga
,
R.
,
2016
, “
Experimental and Numerical Investigation of the Precessing Helical Vortex in a Conical Diffuser, With Rotor-Stator Interaction
,”
ASME J. Fluids Eng.
,
138
(
8
), p.
081106
.10.1115/1.4033416
17.
He
,
L.
,
Chen
,
T.
,
Wells
,
R. G.
,
Li
,
Y. S.
, and
Ning
,
W.
,
2002
, “
Analysis of Rotor-Rotor and Stator-Stator Interferences in Multi-Stage Turbomachines
,”
ASME J. Turbomach.
,
124
(
4
), pp.
564
571
.10.1115/1.1508382
18.
Dring
,
R. P.
,
Joslyn
,
H. D.
,
Hardin
,
L. W.
, and
Wagner
,
J. H.
,
1982
, “
Turbine Rotor-Stator Interaction
,”
ASME J. Eng. Power
,
104
(
4
), pp.
729
742
.10.1115/1.3227339
19.
Zhang
,
J.
, and
2019
, “
Effects of Trailing Edge Position of Splitter Blade on the Pressure Pulsation in a Low Specific Centrifugal Pump
,”
ASME
Paper No. AJKFluids2019-4875.10.1115/AJKFluids2019-4875
20.
Liu
,
M.
,
Tan
,
L.
, and
Cao
,
S.
,
2018
, “
Influence of Geometry of Inlet Guide Vanes on Pressure Fluctuations of a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
140
(
9
), p.
091204
.10.1115/1.4039714
21.
GonzáLez
,
J.
,
FernáNdez
,
JN.
,
Blanco
,
E.
, and
Santolaria
,
C.
,
2002
, “
Numerical Simulation of the Dynamic Effects Due to Impeller-Volute Interaction in a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
124
(
2
), pp.
348
355
.10.1115/1.1457452
22.
Li
,
C.
,
Gao
,
B.
,
Zhang
,
N.
, and
Ni
,
D.
,
2019
, “
Effects of Splitter Vanes on the Performance and Pressure Pulsation in a Centrifugal Pump
,”
ASME
Paper No. AJKFluids2019-4878.10.1115/AJKFluids2019-4878
23.
Gao
,
B.
,
Zhang
,
N.
,
Li
,
Z.
,
Ni
,
D.
, and
Yang
,
M.
,
2016
, “
Influence of the Blade Trailing Edge Profile on the Performance and Unsteady Pressure Pulsations in a Low Specific Speed Centrifugal Pump
,”
ASME J. Fluid Eng.
,
138
(
5
), p.
051106
.
24.
Wang
,
K.
,
Ju
,
Y.
, and
Zhang
,
C.
,
2019
, “
A Quantitative Evaluation Method for Impeller-Volute Tongue Interaction and Application to Squirrel Cage Fan With Bionic Volute Tongue
,”
ASME J. Fluid Eng.
,
141
(
8
), p.
081104
.10.1115/1.4042372
25.
Shen
,
Z.
,
Chu
,
W.
,
Yan
,
S.
,
Chen
,
X.
,
Guo
,
Z.
, and
Zhong
,
Y.
,
2020
, “
Study of the Performance and Internal Flow in Centrifugal Pump With Grooved Volute Casing
,”
Mod. Phys. Lett. B
,
34
(
25
), p.
2050268
.10.1142/S0217984920502681
26.
Song
,
H.
,
Zhang
,
J.
,
Huang
,
P.
,
Cai
,
H.
,
Cao
,
P.
, and
Hu
,
B.
,
2020
, “
Analysis of Rotor-Stator Interaction of a Pump-Turbine With Splitter Blades in a Pump Mode
,”
Math.-Basel
,
8
(
9
), p.
1465
.10.3390/math8091465
27.
Zhang
,
N.
,
Yang
,
M.
,
Gao
,
B.
,
Li
,
Z.
, and
Ni
,
D.
,
2015
, “
Experimental Investigation on Unsteady Pressure Pulsation in a Centrifugal Pump With Special Slope Volute
,”
ASME J. Fluids Eng.
,
137
(
6
), p.
061103
.10.1115/1.4029574
28.
Barrio
,
R.
,
Blanco
,
E.
,
Parrondo
,
J.
,
González
,
J.
, and
Fernández
,
J.
,
2008
, “
The Effect of Impeller Cutback on the Fluid-Dynamic Pulsations and Load at the Blade-Passing Frequency in a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
130
(
11
), p.
111102
.10.1115/1.2969273
29.
Luo
,
H.
,
Tao
,
R.
,
Yang
,
J.
, and
Wang
,
Z.
,
2020
, “
Influence of Blade Leading-Edge Shape on Rotating-Stalled Flow Characteristics in a Centrifugal Pump Impeller
,”
Appl. Sci.-Basel
,
10
(
16
), p.
5635
.
30.
Hua
,
X.
,
Zhang
,
C.
,
Wei
,
J.
,
Hu
,
X.
, and
Wei
,
H.
,
2019
, “
Wind Turbine Bionic Blade Design and Performance Analysis
,”
J. Vis. Commun. Image R.
,
60
, pp.
258
265
.10.1016/j.jvcir.2019.01.037
31.
Winzen
,
A.
,
Roidl
,
B.
, and
Schroeder
,
W.
,
2015
, “
Particle-Image Velocimetry Investigation of the Fluid-Structure Interaction Mechanisms of a Natural Owl Wing
,”
Bioinspir Biomim
,
10
(
5
), p.
056009
.10.1088/1748-3190/10/5/056009
32.
Wagner
,
H.
,
Weger
,
M.
,
Klaas
,
M.
, and
Schröder
,
W.
,
2017
, “
Features of Owl Wings That Promote Silent Flight
,”
Interface Focus
,
7
(
1
), p.
20160078
.10.1098/rsfs.2016.0078
33.
Li
,
B.
,
Li
,
X.
,
Jia
,
X.
,
Chen
,
F.
, and
Fang
,
H.
,
2019
, “
The Role of Blade Sinusoidal Tubercle Trailing Edge in a Centrifugal Pump With Low Specific Speed
,”
Processes
,
7
(
9
), p.
625
.10.3390/pr7090625
34.
Xue
,
G.
,
Liu
,
Y.
,
Zhang
,
M.
, and
Ding
,
H.
,
2016
, “
Numerical Analysis of Hydrodynamics for Bionic Oscillating Hydrofoil Based on Panel Method
,”
Appl. Bionics Biomech
,
2016
, pp.
1
11
.10.1155/2016/6909745
35.
Shi
,
W.
,
Atlar
,
M.
,
Norman
,
R.
,
Aktas
,
B.
, and
Turkmen
,
S.
,
2016
, “
Numerical Optimization and Experimental Validation for a Tidal Turbine Blade With Leading-Edge Tubercles
,”
Renewable Energy
,
96
, pp.
42
55
.10.1016/j.renene.2016.04.064
36.
Yang
,
Z. X.
,
Li
,
G. S.
,
Song
,
L.
, and
Bai
,
Y. F.
,
2017
, “
Effects of Setting Angle and Chord Length on Performance of Four Blades Bionic Wind Turbine
,”
International Conference on New Energy and Future Energy System
, Kunming, China, Sept. 22–25, Paper No.
012041
.10.1088/1755-1315/93/1/012041
37.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Application
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
38.
Heskestad
,
G.
, and
Olberts
,
D. R.
,
1960
, “
Influence of Trailing-Edge Geometry on Hydraulic-Turbine-Blade Vibration Resulting From Vortex Excitation
,”
ASME J. Eng. Power
,
82
(
2
), pp.
103
109
.10.1115/1.3672718
39.
Zobeiri
,
A.
,
Ausoni
,
P.
,
Avellan
,
F.
, and
Farhat
,
M.
,
2012
, “
How Oblique Trailing Edge of a Hydrofoil Reduces the Vortex-Induced Vibration
,”
J. Fluid Struct.
,
32
, pp.
78
89
.10.1016/j.jfluidstructs.2011.12.003
40.
Ni
,
D.
,
Yang
,
M.
,
Gao
,
B.
,
Zhang
,
N.
, and
Li
,
Z.
,
2017
, “
Numerical Study on the Effect of the Diffuser Blade Trailing Edge Profile on Flow Instability in a Nuclear Reactor Coolant Pump
,”
Nucl. Eng. Des.
,
322
, pp.
92
103
.10.1016/j.nucengdes.2017.06.042
41.
Zhang
,
N.
,
Jiang
,
J.
,
Gao
,
B.
,
Liu
,
X.
, and
Ni
,
D.
,
2020
, “
Numerical Analysis of the Vortical Structure and Its Unsteady Evolution of a Centrifugal Pump
,”
Renewable Energy
,
155
, pp.
748
760
.10.1016/j.renene.2020.03.182
42.
Zhang
,
N.
,
Liu
,
X.
,
Gao
,
B.
,
Wang
,
X.
, and
Xia
,
B.
,
2019
, “
Effects of Modifying the Blade Trailing Edge Profile on Unsteady Pressure Pulsations and Flow Structures in a Centrifugal Pump
,”
Int. J. Heat Fluid Flow
,
75
, pp.
227
238
.10.1016/j.ijheatfluidflow.2019.01.009
43.
Da Silva
,
C. B.
, and
Pereira
,
J. C. F.
,
2009
, “
Invariants of the Velocity-Gradient, Rate-of-Strain, and Rate-of-Rotation Tensors Across the Turbulent/Nonturbulent Interface in Jets
,”
Phys. Fluids
,
21
(
1
), p.
019902
.
You do not currently have access to this content.