Abstract

This study investigates the influence of an annular coflowing air stream on the puffing behavior of a buoyant plume by employing the BiGlobal Linear Stability Analysis. An increase in the coflow is found to mitigate the puffing intensity and eventually stabilize the plumes. From the stability analysis, the critical coflow ratios, which represent the amount of coflow required to completely suppress the puffing, have been estimated for plumes spanning a wide range of nondimensional parameters. The analysis shows that the critical coflow ratio largely depends on the two buoyancy parameters, the Froude number, and the density ratio whereas it remains marginally affected by the plume Reynolds number. Plumes with higher buoyancy require larger coflow for suppressing puffing. From the instability analysis, we have obtained a correlation law for critical coflow ratios in buoyant plumes. Also, it is found that the plume puffing frequency increases with an increase in the coflow. We attempt to ascertain the reasons for instability mitigation and frequency increase in the puffing plumes because of coflow.

References

1.
Cetegen
,
B. M.
, and
Ahmed
,
T. A.
,
1993
, “
Experiments on the Periodic Instability of Buoyant Plumes and Pool Fires
,”
Combust. Flame
,
93
(
1–2
), pp.
157
184
.10.1016/0010-2180(93)90090-P
2.
Malalasekera
,
W. M. G.
,
Versteeg
,
H. K.
, and
Gilchrist
,
K.
,
1996
, “
A Review of Research and an Experimental Study on the Pulsation of Buoyant Diffusion Flames and Pool Fires
,”
Fire Mater.
,
20
(
6
), pp.
261
271
.10.1002/(SICI)1099-1018(199611)20:6<261::AID-FAM578>3.0.CO;2-M
3.
Tieszen
,
S. R.
,
2001
, “
On the Fluid Mechanics of Fires
,”
Annu. Rev. Fluid Mech.
,
33
(
1
), pp.
67
92
.10.1146/annurev.fluid.33.1.67
4.
Maxworthy
,
T.
,
1999
, “
The Flickering Candle: Transition to a Global Oscillation in a Thermal Plume
,”
J. Fluid Mech.
,
390
, pp.
297
323
.10.1017/S002211209900508X
5.
Moreno-Boza
,
D.
,
Coenen
,
W.
,
Sevilla
,
A.
,
Carpio
,
J.
,
Sánchez
,
A.
, and
Liñán
,
A.
,
2016
, “
Diffusion-Flame Flickering as a Hydrodynamic Global Mode
,”
J. Fluid Mech.
,
798
, pp.
997
1014
.10.1017/jfm.2016.358
6.
Subbarao
,
E.
, and
Cantwell
,
B.
,
1992
, “
Investigation of a Co-Flowing Buoyant Jet: Experiments on the Effect of Reynolds Number and Richardson Number
,”
J. Fluid Mech.
,
245
(
1
), pp.
69
90
.10.1017/S0022112092000351
7.
Cetegen
,
B. M.
, and
Kasper
,
K. D.
,
1996
, “
Experiments on the Oscillatory Behavior of Buoyant Plumes of Helium and Helium-Air Mixtures
,”
Phys. Fluids
,
8
(
11
), pp.
2974
2984
.10.1063/1.869075
8.
Cetegen
,
B. M.
,
1997
, “
Behavior of Naturally Unstable and Periodically Forced Axisymmetric Buoyant Plumes of Helium and Helium–Air Mixtures
,”
Phys. Fluids
,
9
(
12
), pp.
3742
3752
.10.1063/1.869512
9.
Cetegen
,
B.
,
Dong
,
Y.
, and
Soteriou
,
M.
,
1998
, “
Experiments on Stability and Oscillatory Behavior of Planar Buoyant Plumes
,”
Phys. Fluids
,
10
(
7
), pp.
1658
1665
.10.1063/1.869683
10.
Bharadwaj
,
K. K.
, and
Das
,
D.
,
2017
, “
Global Instability Analysis and Experiments on Buoyant Plumes
,”
J. Fluid Mech.
,
832
, pp.
97
145
.10.1017/jfm.2017.665
11.
Bharadwaj
,
K. K.
, and
Das
,
D.
,
2019
, “
Puffing in Planar Buoyant Plumes: Biglobal Instability Analysis and Experiments
,”
J. Fluid Mech.
,
863
, pp.
817
849
.10.1017/jfm.2018.1022
12.
Jiang
,
X.
, and
Luo
,
K.
,
2000
, “
Direct Numerical Simulation of the Puffing Phenomenon of an Axisymmetric Thermal Plume
,”
Theor. Comput. Fluid Dyn.
,
14
(
1
), pp.
55
74
.10.1007/s001620050125
13.
Soteriou
,
M.
,
Dong
,
Y.
, and
Cetegen
,
B.
,
2002
, “
Lagrangian Simulation of the Unsteady Near Field Dynamics of Planar Buoyant Plumes
,”
Phys. Fluids
,
14
(
9
), pp.
3118
3140
.10.1063/1.1491248
14.
Hattori
,
T.
,
Bartos
,
N.
,
Norris
,
S.
,
Kirkpatrick
,
M.
, and
Armfield
,
S.
,
2013
, “
Experimental and Numerical Investigation of Unsteady Behaviour in the Near-Field of Pure Thermal Planar Plumes
,”
Exp. Therm. Fluid Sci.
,
46
, pp.
139
150
.10.1016/j.expthermflusci.2012.12.005
15.
Wimer
,
N.
,
Lapointe
,
C.
,
Christopher
,
J.
,
Nigam
,
S.
,
Hayden
,
T.
,
Upadhye
,
A.
,
Strobel
,
M.
,
Rieker
,
G.
, and
Hamlington
,
P.
,
2020
, “
Scaling of the Puffing Strouhal Number for Buoyant Jets and Plumes
,”
J. Fluid Mech.
,
895
, p. A26.10.1017/jfm.2020.271
16.
Chakravarthy
,
R. V. K.
,
Lesshafft
,
L.
, and
Huerre
,
P.
,
2018
, “
Global Stability of Buoyant Jets and Plumes
,”
J. Fluid Mech.
,
835
, pp.
654
673
.10.1017/jfm.2017.764
17.
Coenen
,
W.
,
Lesshafft
,
L.
,
Garnaud
,
X.
, and
Sevilla
,
A.
,
2017
, “
Global Instability of Low-Density Jets
,”
J. Fluid Mech.
,
820
, pp.
187
207
.10.1017/jfm.2017.203
18.
Moreno-Boza
,
D.
,
Coenen
,
W.
,
Carpio
,
J.
,
Sánchez
,
A. L.
, and
Williams
,
F. A.
,
2018
, “
On the Critical Conditions for Pool-Fire Puffing
,”
Combust. Flame
,
192
, pp.
426
438
.10.1016/j.combustflame.2018.02.011
19.
Hallberg
,
M.
,
Srinivasan
,
V.
,
Gorse
,
P.
, and
Strykowski
,
P. J.
,
2007
, “
Suppression of Global Modes in Low-Density Axisymmetric Jets Using Coflow
,”
Phys. Fluids
,
19
(
1
), p.
014102
.10.1063/1.2427091
20.
Darabkhani
,
H. G.
,
Wang
,
Q.
,
Chen
,
L.
, and
Zhang
,
Y.
,
2011
, “
Impact of co-Flow Air on Buoyant Diffusion Flames Flicker
,”
Energy Convers. Manage.
,
52
(
8–9
), pp.
2996
3003
.10.1016/j.enconman.2011.04.011
21.
Fujisawa
,
N.
,
Matsumoto
,
Y.
, and
Yamagata
,
T.
,
2016
, “
Influence of Co-Flow on Flickering Diffusion Flame
,”
Flow Turbul. Combust.
,
97
(
3
), pp.
931
950
.10.1007/s10494-016-9730-9
22.
Sevilla
,
A.
,
Gordillo
,
J.
, and
Martínez-Bazán
,
C.
,
2005
, “
Transition From Bubbling to Jetting in a Coaxial Air–Water Jet
,”
Phys. Fluids
,
17
(
1
), p.
018105
.10.1063/1.1831312
23.
Sevilla
,
A.
, and
Martínez-Bazán
,
C.
,
2004
, “
Vortex Shedding in High Reynolds Number Axisymmetric Bluff-Body Wakes: Local Linear Instability and Global Bleed Control
,”
Phys. Fluids
,
16
(
9
), pp.
3460
3469
.10.1063/1.1773071
24.
Sevilla
,
A.
,
Gordillo
,
J.
,
Mart
,
I.
, and
Bazán
,
C.
,
2002
, “
The Effect of the Diameter Ratio on the Absolute and Convective Instability of Free Coflowing Jets
,”
Phys. Fluids
,
14
(
9
), pp.
3028
3038
.10.1063/1.1496511
25.
Sanmiguel-Rojas
,
E.
,
Sevilla
,
A.
,
Martínez-Bazán
,
C.
, and
Chomaz
,
J.-M.
,
2009
, “
Global Mode Analysis of Axisymmetric Bluff-Body Wakes: Stabilization by Base Bleed
,”
Phys. Fluids
,
21
(
11
), p.
114102
.10.1063/1.3259357
26.
Bohorquez
,
P.
,
Sanmiguel-Rojas
,
E.
,
Sevilla
,
A.
,
Jiménez-González
,
J.
, and
Martínez-Bazán
,
C.
,
2011
, “
Stability and Dynamics of the Laminar Wake Past a Slender Blunt-Based Axisymmetric Body
,”
J. Fluid Mech.
,
676
(
1
), pp.
110
144
.10.1017/jfm.2011.35
27.
Srinivasan
,
V.
,
Hallberg
,
M.
, and
Strykowski
,
P.
,
2010
, “
Viscous Linear Stability of Axisymmetric Low-Density Jets: Parameters Influencing Absolute Instability
,”
Phys. Fluids
,
22
(
2
), p.
024103
.10.1063/1.3306671
28.
Nichols
,
J. W.
,
Schmid
,
P. J.
, and
Riley
,
J. J.
,
2007
, “
Self-Sustained Oscillations in Variable-Density Round Jets
,”
J. Fluid Mech.
,
582
, pp.
341
376
.10.1017/S0022112007005903
29.
Chandler
,
G. J.
,
Juniper
,
M. P.
,
Nichols
,
J. W.
, and
Schmid
,
P. J.
,
2012
, “
Adjoint Algorithms for the Navier–Stokes Equations in the Low Mach Number Limit
,”
J. Comput. Phys.
,
231
(
4
), pp.
1900
1916
.10.1016/j.jcp.2011.11.013
30.
Wilke
,
C.
,
1950
, “
A Viscosity Equation for Gas Mixtures
,”
J. Chem. Phys.
,
18
(
4
), pp.
517
519
.10.1063/1.1747673
31.
Fluent
,
A.
,
2013
, “
Release 15.0 Theory Guide, 11
,” ANSYS Inc., Canonsburg, PA.
32.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
,
Pearson Education
, New Delhi, India.
33.
Weideman
,
J. A.
, and
Reddy
,
S. C.
,
2000
, “
A Matlab Differentiation Matrix Suite
,”
ACM Trans. Math. Software
,
26
(
4
), pp.
465
519
.10.1145/365723.365727
34.
Lesshafft
,
L.
, and
Huerre
,
P.
,
2007
, “
Linear Impulse Response in Hot Round Jets
,”
Phys. Fluids
,
19
(
2
), p.
024102
.10.1063/1.2437238
35.
Khorrami
,
M. R.
,
Malik
,
M. R.
, and
Ash
,
R. L.
,
1989
, “
Application of Spectral Collocation Techniques to the Stability of Swirling Flows
,”
J. Comput. Phys.
,
81
(
1
), pp.
206
229
.10.1016/0021-9991(89)90071-5
36.
Juniper
,
M. P.
,
Hanifi
,
A.
, and
Theofilis
,
V.
,
2014
, “
Modal Stability Theory: Lecture Notes From the Flow-Nordita Summer School on Advanced Instability Methods for Complex Flows, Stockholm, Sweden, 2013
,”
ASME Appl. Mech. Rev.
,
66
(
2
), p.
024804
.10.1115/1.4026604
You do not currently have access to this content.