Abstract

The aim of the present study is to investigate fluid dynamics and pressure drop across sudden contractions in a two-dimensional, axisymmetric pipe carrying a two-phase mixture of air (secondary phase) and water (primary phase), using the Eulerian–Eulerian model of the multiphase flow physics to solve the mass, momentum, volume fraction and turbulent quantities with relevant boundary conditions in a finite volume framework. The realizable per-phase k-ε and Reynolds stress models have been used as the closure for turbulent quantities along with enhanced wall function for the near-wall treatment. The effects of various parameters such as mass flux, mass flow quality, area ratio (0.056–0.619), flow directions (horizontal/vertical), and system pressure on the two-phase pressure drops due to a contraction in the pipe have been quantified. For both the single and two-phase flows, it has been observed that the pressure drop decreases with area ratio, and increases with mass flux and mass flow quality of two-phase flow. The vena contracta for a single-phase flow was found. But for two-phase flow, neither the vena contracta nor the recirculation zone has been observed, as the mass quality exceeds above 50%. A higher pressure drop has been observed for vertical pipes as compared to horizontal pipes. The present numerical results have also been validated with published experimental results, believed to be one of the alternatives to the costly experimental methods for predicting the flow dynamics and pressure drop.

References

1.
Hwang
,
C. Y. J.
, and
Pal
,
R.
,
1997
, “
Flow of Two Phase Oil/Water Mixtures Through Sudden Expansions and Contractions
,”
Chem. Eng. J.
,
68
(
2–3
), pp.
157
163
.10.1016/S1385-8947(97)00094-6
2.
Schmidt
,
J.
, and
Friedel
,
L.
,
1997
, “
Two-Phase Pressure Drop Across Sudden Contractions in Duct Areas
,”
Int. J. Multiphase Flow
,
23
(
2
), pp.
283
299
.10.1016/S0301-9322(96)00056-0
3.
Attou
,
A.
, and
Bolle
,
L.
,
1995
, “
Evaluation of the Two-Phase Pressure Loss Across Singularities
,”
ASME Pub. FED
,
210
, pp.
121
127
.
4.
Jansen
,
E.
,
1996
, “
Two-Phase Pressure Loss Across Abrupt Contractions and Expansion, Steam Water Mixtures at 600–1400 Psia
,”
Int. Heat Transfer Conf. ASME
,
5
, pp.
13
25
.https://www.osti.gov/servlets/purl/4012231
5.
Abdelall
,
F. F.
,
Hahn
,
G.
,
Ghiaasiaan
,
S. M.
,
Abdel-Khalik
,
S. I.
,
Jeter
,
S. S.
,
Yoda
,
M.
, and
Sadowski
,
D. L.
,
2005
, “
Pressure Drop Caused by Abrupt Flow Area Changes in Small Channels
,”
Exp. Therm. Fluid Sci.
,
29
(
4
), pp.
425
434
.10.1016/j.expthermflusci.2004.05.001
6.
Santana
,
A. L. B.
,
Neto
,
M. A. M.
, and
Morales
,
R. E. M.
,
2020
, “
Pressure Drop of Horizontal Air-Water Slug Flow in Different Configurations of Corrugated Pipes
,”
ASME J. Fluids Eng.
,
142
(
11
), p. 111401.10.1115/1.4047676
7.
Chinello
,
G.
,
Ayati
,
A. A.
,
McGlinchey
,
D.
,
Ooms
,
G.
, and
Henkes
,
R.
,
2019
, “
Comparison of Computational Fluid Dynamics Simulations and Experiments for Stratified Air-Water Flows in Pipes
,”
ASME J. Fluids Eng.
,
141
(
5
), p.
051302
.10.1115/1.4041667
8.
Otaru
,
A. J.
, and
Kennedy
,
A. R.
,
2019
, “
Investigation of the Pressure Drop Across Packed Beds of Spherical Beads: Comparison of Empirical Models With Pore-Level Computational Fluid Dynamics Simulations
,”
ASME J. Fluids Eng.
,
141
(
7
), p.
071305
.10.1115/1.4042957
9.
Annus
,
I.
,
Kartushinsky
,
A.
,
Vassiljev
,
A.
, and
Kaur
,
K.
,
2019
, “
Numerical and Experimental Investigation on Flow Dynamics in a Pipe With an Abrupt Change in Diameter
,”
ASME J. Fluids Eng.
,
141
(
10
), p.
101301
.10.1115/1.4043233
10.
Nasrfard
,
H.
,
Rahimzadeh
,
H.
,
Ahmadpour
,
A.
, and
Amani
,
E.
,
2019
, “
Simulation of Intermittent Flow Development in a Horizontal Pipe
,”
ASME J. Fluids Eng.
,
141
(
12
), p.
121305
.10.1115/1.4044069
11.
Zeghloul
,
A.
,
Bouyahiaoui
,
H.
,
Azzi
,
A.
,
Hasan
,
A. H.
, and
Al-Sarkhi
,
A.
,
2020
, “
Experimental Investigation of the Vertical Upward Single- and Two-Phase Flow Pressure Drops Through Gate and Ball Valves
,”
ASME J. Fluids Eng.
,
142
(
2
), p.
021401
.10.1115/1.4044833
12.
Chahed
,
J.
, and
Masbernat
,
L.
,
2020
, “
Modeling Interfacial Interactions and Turbulence in the Near-Wall Region of a Vertical Bubbly Boundary Layer
,”
ASME J. Fluids Eng.
,
142
(
6
), p.
061405
.10.1115/1.4045994
13.
He
,
D.
,
Ge
,
Z.
,
Bai
,
B.
,
Guo
,
P.
, and
Luo
,
X.
,
2020
, “
Gas–Liquid Two-Phase Performance of Centrifugal Pump Under Bubble Inflow Based on Computational Fluid Dynamics–Population Balance Model Coupling Model
,”
ASME J. Fluids Eng.
,
142
(
8
), p.
081402
.10.1115/1.4047064
14.
Gudala
,
M.
,
Banerjee
,
S.
,
Kumar
,
R.
,
Rao
,
T. R. M.
,
Mandal
,
A.
, and
Naiya
,
T. K.
,
2018
, “
Experimental Investigation on Hydrodynamics of Two-Phase Crude Oil Flow in Horizontal Pipe With Novel Surfactant
,”
ASME J. Fluids Eng.
,
140
(
6
), p.
061302
.10.1115/1.4039130
15.
Zeghloul
,
A.
,
Azzi
,
A.
,
Saidj
,
F.
,
Messilem
,
A.
, and
Azzopardi
,
B. J.
,
2017
, “
Pressure Drop Through Orifices for Single- and Two-Phase Vertically Upward Flow–Implication for Metering
,”
ASME J. Fluids Eng.
,
139
(
3
), p.
031302
.10.1115/1.4034758
16.
Roul
,
M. K.
, and
Dash
,
S. K.
,
2009
, “
Pressure Drop Caused by Two-Phase Flow of Oil/Water Emulsions Through Sudden Expansions and Contractions: A Computational Approach
,”
Int. J. Numer. Methods Heat Fluid Flow
,
19
(
5
), pp.
665
688
.10.1108/09615530910963580
17.
Roul
,
M. K.
, and
Dash
,
S. K.
,
2011
, “
Two-Phase Pressure Drop Caused by Sudden Flow Area Contraction/Expansion in Small Circular Pipes
,”
Int. J. Numer. Methods Fluids
,
66
(
11
), pp.
1420
1446
.10.1002/fld.2322
18.
Crowe
,
C.
,
Sommerfeld
,
M.
, and
Tsuji
,
Y.
,
1998
,
Multiphase Flows With Droplets and Particles
,
CRC Press
,
Boca Raton, FL
.
19.
Drew
,
D. A.
,
1983
, “
Mathematical Modeling of Two-Phase Flows
,”
Annu. Rev. Fluid Mech.
,
15
(
1
), pp.
261
291
.10.1146/annurev.fl.15.010183.001401
20.
Roul
,
M. K.
, and
Dash
,
S. K.
,
2012
, “
Single-Phase and Two-Phase Flow Through Thin and Thick Orifices in Horizontal Pipes
,”
ASME J. Fluids Eng.
,
134
(
9
), pp.
091301
1
091301-14
.10.1115/1.4007267
21.
Wallis
,
G. B.
,
1969
,
One-Dimensional Two-Phase Flow
,
McGraw-Hill
,
New York
.
22.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.10.1016/0045-7825(74)90029-2
23.
Shih
,
T. H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New k-ɛ Eddy-Viscosity Model for High Reynolds Number Turbulent Flows - Model Development and Validation
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.10.1016/0045-7930(94)00032-T
24.
Troshko
,
A. A.
, and
Hassan
,
Y. A.
,
2001
, “
A Two-Equation Turbulence Model of Turbulent Bubbly Flows
,”
Int. J. Multiphase Flow
,
27
(
11
), pp.
1965
2000
.10.1016/S0301-9322(01)00043-X
25.
Leonard
,
B. P.
, and
Mokhtari
,
S.
,
1990
, “
Ultra-Sharp Nonoscillatory Convection Schemes for High-Speed Steady Multidimensional Flow
,” NASA TM 1-2568 (ICOMP-90-12), NASA Lewis Research Center, Cleveland, OH.
26.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
McGraw-Hill
,
Hemisphere, Washington, DC
.
You do not currently have access to this content.