Abstract

It is possible to optimize a turbocharger's performance for a broad range of engine operating points. However, most of the turbochargers have distinctive performance characteristics independent of engine operation. Therefore, the correct way to obtain the maximum performance from an engine is to design its turbocharger with the specific engine performance map in mind. This paper deals with the effective use of computational methods to create optimal turbocharger compressors for realistic engine operating conditions. The present process has four steps: preliminary analysis, throughflow analysis, optimization, and computational fluid dynamics (CFD) analysis. In the preliminary analysis, gas dynamics and Euler turbomachinery equations are used to calculate the basic dimensions. In the throughflow analysis, calculated dimensions are used to create a parametric three-dimensional (3D) geometry. A throughflow analysis generates the two-dimensional flow results using the meridional geometry of this 3D geometry. The main contribution of this research is the five different optimization methods that are employed and compared. The efficiency of the rotor is defined as the objective function to be maximized. A comparison of the five optimization schemes showed that the genetic algorithm (GA) is the most suitable method for the current design optimization problem. In the final step, a CFD solver is used to assess the created design's final performance. The CFD results' validity is checked against a reference compressor's test results. This study also indicates that preliminary sizing followed by a well-built throughflow analysis eliminates the need for a fully parametric 3D CFD-based design.

References

1.
Garrett Motion
, 2021, “
How a Turbo Works – Basic
,” Garrett Motion, accessed Dec. 1, 2021, https://www.garrettmotion.com/knowledge-center-category/oem/basic/
2.
Hiereth
,
H.
, and
Prenninger
,
P.
,
2007
,
Charging the Internal Combustion Engine
,
Springer
,
Vienna, Austria
.
3.
Watson
,
N.
, and
Janota
,
M. S.
,
1982
,
Turbocharging the Internal Combustion Engine
,
Palgrave
,
London, UK
.
4.
Nguyen-Schäfer
,
H.
,
2013
,
Aero and Vibroacoustics of Automotive Turbochargers
,
Springer
,
Berlin, Germany
.
5.
Walsham
,
B. E.
, and
Winterbone
,
D. E.
,
1990
, “
The Turbocharger
,”
Internal Combustion Engineering: Science & Technology
,
Weaving
,
J. H.
, ed.,
Springer
,
Dordrecht, The Netherlands
, pp.
615
706
.
6.
Nguyen-Schäfer
,
H.
,
2015
,
Rotordynamics of Automotive Turbochargers
,
Springer
,
Cham, Switzerland
.
7.
Baines
,
N. C.
,
2005
,
Fundamentals of Turbocharging
,
Concepts ETI
,
Hartford, VT
.
8.
Cummins
,
2021
, “
Turbocharger History
,” Cummins Inc., Moscow, accessed Dec. 1, 2021, http://www.cummins.ru/en/components/turbo-technologies/turbocharger-history
9.
BorgWarner
,
2021
, “
Boosting Technologies
,” BorgWarner, accessed Dec. 1, 2021, https://www.borgwarner.com/technologies/boosting-technologies
10.
Golloch
,
R.
, and
Merker
,
G. P.
,
2005
, “
Internal Combustion Engine Downsizing
,”
MTZ Worldwide
,
66
(
2
), pp.
20
22
.10.1007/BF03227737
11.
Eriksson
,
L.
,
Wahlström
,
J.
, and
Klein
,
M.
,
2010
, “
Physical Modeling of Turbocharged Engines and Parameter Identification
,”
Automotive Model Predictive Control
,
L.
del Re
,
F.
Allgöwer
,
L.
Glielmo
,
C.
Guardiola
, and
I.
Kolmanovsky
, eds.,
Springer
,
London, UK
, pp.
53
71
.
12.
Japikse
,
D.
, and
Baines
,
N. C.
,
1997
,
Introduction to Turbomachinery
,
Concepts ETI
,
Hartford, VT
.
13.
Japikse
,
D.
,
1996
,
Centrifugal Compressor Design and Performance
,
Concepts ETI
,
Hartford, VT
.
14.
Qiu
,
X.
,
Fredriksson
,
C. F.
,
Baines
,
N. C.
, and
Backlund
,
M.
,
2013
, “
Designing Turbochargers With an Integrated Design System
,”
ASME
Paper No. GT2013-94894.10.1115/GT2013-94894
15.
De Bellis
,
V.
,
Bozza
,
F.
,
Bevilacqua
,
M.
,
Bonamassa
,
G.
, and
Schernus
,
C.
,
2013
, “
Validation of a 1D Compressor Model for Performance Prediction
,”
SAE
Paper No. 2013-24-0120.10.4271/2013-24-0120
16.
Canova
,
M.
,
Naddeo
,
M.
,
Liu
,
Y.
,
Zhou
,
J.
, and
Wang
,
Y. Y.
,
2015
, “
A Scalable Modeling Approach for the Simulation and Design Optimization of Automotive Turbochargers
,”
SAE
Paper No. 2015-01-1288.10.4271/2015-01-1288
17.
Nasser
,
S.
, and
Playfoot
,
B.
,
1999
, “
A Turbocharger Selection Computer Model
,”
SAE
Paper No. 1999-01-0559.10.4271/1999-01-0559
18.
Pakle
,
S.
, and
Jiang
,
K.
,
2018
, “
Design of a High-Performance Centrifugal Compressor With New Surge Margin Improvement Technique for High Speed Turbomachinery
,”
Propul. Power Res.
,
7
(
1
), pp.
19
29
.10.1016/j.jppr.2018.02.004
19.
Favaretto
,
C. F. F.
,
Anderson
,
M. R.
,
Li
,
S.
, and
Hu
,
L.
,
2018
, “
Development of a Meanline Model for Preliminary Design of Recirculating Casing Treatment in Turbocharger Compressors
,”
ASME
Paper No. GT2018-75717.10.1115/GT2018-75717
20.
Dombrovsky
,
A.
,
2017
, “
Synthesis of the 1D Modelling of Turbochargers and Its Effects on Engine Performance Prediction
,”
Ph.D. dissertation
,
Universitat Politècnica de València
,
Valencia, Spain
.https://dialnet.unirioja.es/servlet/tesis?codigo=156604
21.
Dehner
,
R.
,
Selamet
,
A.
,
Keller
,
P.
, and
Becker
,
M.
,
2010
, “
Simulation of Mild Surge in a Turbocharger Compression System
,”
SAE
Paper No. 2010-01-2142.10.4271/2010-01-2142
22.
Im
,
K.
,
2012
, “
Development of a Design Method for Centrifugal Compressors
,”
Ph.D. dissertation
,
Michigan State University
,
East Lansing, MI
.https://d.lib.msu.edu/etd/842/datastream/OBJ/download/Development_of_a_design_method_for_centrifugal_compressors.pdf
23.
Schiff
,
J.
,
2013
, “
A Preliminary Design Tool for Radial Compressors
,”
M.Sc. thesis
,
Lund University
,
Lund
.https://lup.lub.lu.se/luur/download?fileOId=3920371&func=downloadFile&recordOId=3920370
24.
Buchman
,
M.
,
Ramanujan
,
D.
, and
Winter
,
A.
,
2018
, “
A Method for Turbocharging Single-Cylinder, Four-Stroke Engines
,”
SAE
Paper No. 03-11-04-0028.10.4271/03-11-04-0028
25.
Tsukiyama
,
T.
,
Yonezawa
,
K.
,
Iwata
,
H.
, and
Ishikawa
,
M.
,
2015
, “
Development of New Toyota D-Series Turbocharger for GD Diesel Engine
,”
SAE
Paper No. 2015-01-1969.10.4271/2015-01-1969
26.
Golovan
,
A.
,
Gritsuk
,
I.
,
Popeliuk
,
V.
,
Sherstyuk
,
O.
,
2020
, “
Features of Mathematical Modeling in the Problems of Determining the Power of a Turbocharged Engine According to the Characteristics of the Turbocharger
,”
SAE
Paper No. 03-13-01-0001.10.4271/03-13-01-0001
27.
Japikse
,
D.
, and
Baines
,
N. C.
,
1998
,
Diffuser Design Technology
,
Concepts ETI
,
Hartford
, VT.
28.
Wiesner
,
F. J.
,
1967
, “
A Review of Slip Factors for Centrifugal Impellers
,”
ASME J. Eng. Power
,
89
(
4
), pp.
558
566
.10.1115/1.3616734
29.
ANSYS
,
2014
,
Design Exploration User's Guide
, ANSYS, Release 15,
Ansys
,
Canonsburg, PA
.
30.
Box
,
G.
, and
Wilson
,
K. B.
,
1951
, “
On the Experimental Attainment of Optimum Conditions
,”
J. R. Stat. Soc. Ser. B
,
13
(
1
), pp.
1
38
.10.1111/j.2517-6161.1951.tb00067.x
31.
Montgomery
,
D. C.
,
2005
,
Design and Analysis of Experiments
,
Wiley
,
New York
.
32.
Schittkowski
,
K.
,
1986
, “
NLPQL: A Fortran Subroutine Solving Constrained Nonlinear Programming Problems
,”
Ann. Oper. Res.
,
5
(
1–4
), pp.
485
500
.10.1007/BF02739235
33.
MATLAB,
2021
, “MATLAB Optimization Toolbox™ User's Guide, MathWorks Help Center PDF Documentation for Optimization Toolbox,”
MATLAB
, Revision 9.2, The Mathworks, Inc., Portola Valley, CA, accessed Sept. 12, 2021, https://www.mathworks.com/help/pdf_doc/optim/optim.pdf
34.
Lagarias
,
J. C.
,
Reeds
,
J. A.
,
Wright
,
M. H.
, and
Wright
,
P. E.
,
1998
, “
Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions
,”
SIAM J. Optim.
,
9
(
1
), pp.
112
147
.10.1137/S1052623496303470
35.
MATLAB,
2021
, “
MATLAB Global Optimization Toolbox User's Guide
, MathWorks Help Center PDF Documentation for Optimization Toolbox,”
MATLAB
, revision 4.6, The Mathworks, Inc., Portola Valley, CA, accessed Sept. 12, 2021, https://www.mathworks.com/help/pdf_doc/gads/gads.pdf
36.
ANSYS,
2021
, “
Computational Fluid Dynamics (CFD) Software Program Solutions
,”
ANSYS,
Canonsburg, PA, accessed Oct. 12, https://www.ansys.com/products/fluids/ansys-cfx
37.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
38.
Menter
,
F. R.
,
Ferreira
,
J. C.
, and
Esch
,
T.
,
2003
, “
The SST Turbulence Model With Improved Wall Treatment for Heat Transfer Predictions in Gas Turbines
,” Proceedings of the International Gas Turbine Congress, Gas Turbine Society of Japan (
GTSJ
), Tokyo, Nov. 2, Paper No. IGTC2003-TS-059.https://www.semanticscholar.org/paper/The-SSTTurbulence-Model-with-Improved-Wall-for-in-Menter-Ferreira/06cc622fb262b39b3ef0eb2c266baf08a94a6f1d
39.
Casey
,
M.
, and
Robinson
,
C.
,
2013
, “
A Method to Estimate the Performance Map of a Centrifugal Compressor Stage
,”
ASME J. Turbomach.
,
135
(
2
), p.
021034
.10.1115/1.4006590
You do not currently have access to this content.