Abstract

Unique aspects in the development of bistable load-type fluidic oscillators that satisfy the requirement of producing large-amplitude pressure fluctuations during the charging of vessels for potential implementation in industrial processes such as the superplastic forming process are addressed in this paper. A pseudo-3D computational fluid dynamic model is shown to be capable of accurately predicting the experimental values of the dimensionless frequencies and pressure fluctuation amplitudes as well as the experimental Schlieren images of the flow field obtained over a wide range of operating conditions. The pseudo-3D model is also used to provide details of the fluid motion in the oscillator which could not be measured experimentally when investigating the operation of the device. The flow switching mechanism is identified as a consequence of a reduction of the flow deflection angle due to the increase of the downstream pressure load by the charging of feedback tanks. Some examples of the usefulness of the model as a cost-effective industrial design tool are also demonstrated. The effects of changing the number and size of the feedback tank volumes on the device frequency and amplitude of the oscillation are clearly shown using dimensionless variables.

References

1.
Koehler
,
W.
,
Plege
,
B.
,
Sahm
,
K. F.
, and
Padmapriya
,
N.
,
2017
, “
Metal Forming: Specialized Procedures for the Aircraft Industry
,”
Reference Module in Materials Science and Materials Engineering
,
Elsevier
, New York.
2.
Ashikian
,
B.
,
Darmedru
,
P.
, and
Caen
,
R.
,
1970
, “
Proportional Fluid Amplifiers as Feedback Oscillators
,”
ASME J. Appl. Mech.
,
37
(
3
), pp.
801
811
.10.1115/1.3408612
3.
Tesař
,
V.
,
2017
, “
Taxonomic Trees of Fluidic Oscillators
,”
EPJ Web Conf.
,
143
, p.
02128
.
4.
Campagnuolo
,
C. J.
, and
Lee
,
H. C.
,
1969
, “
Review of Some Fluid Oscillators
,”
Harry Diamond Labs, Adelphi, MD
, Report No. AD0689445.
5.
Tesař
,
V.
,
Peszynski
,
K.
, and
Smyk
,
E.
,
2016
, “
Fluidic Low-Frequency Oscillator Consisting of Load-Switched Diverter and a Pair of Vortex Chambers
,”
EPJ Web Conf.
,
114
, p.
02121
.10.1051/epjconf/201611402121
6.
Raghu
,
S.
,
2001
, “
Feedback-Free Fluidic Oscillator and Method
,” Patent No.
US006253782B1
.https://patentimages.storage.googleapis.com/4d/32/82/d5c66d1defcfc5/US6253782.pdf
7.
Strasser
,
W.
,
2022
, “
The Nature of ‘Searching’ Vortices in Fluidic Logic Driven by a Switching Jet
,”
ASME J. Fluids Eng.
,
144
(
8
), p.
081303
.10.1115/1.4053786
8.
Nicholls
,
C. J.
,
Tang
,
B. M. T.
,
Turner
,
J.
, and
Bacic
,
M.
,
2022
, “
Novel Operating Mode of a Fluidic Oscillator
,”
ASME J. Fluids Eng.
,
144
(
7
), p.
071501
.10.1115/1.4053554
9.
Scott
,
R. R.
,
1968
, “
An Investigation of a Supersonic Fluid Amplifier
,”
University of Alabama
, Tuscaloosa, AL, Contract No. DA-01-021-AMC 15570(Z).
10.
McGeachy
,
J. D.
, and
Chow
,
W. L.
,
1973
, “
A Study of Feedback Fluid Jet Oscillator With a Supersonic Power Jet. I. Presentation and Interpretation of the Experimental Data
,”
ASME J. Dyn. Syst. Meas. Control Ser. G
,
95
(
2
), pp.
180
184
.10.1115/1.3426676
11.
Gregory
,
J.
, and
Tomac
,
M. N.
,
2013
, “
A Review of Fluidic Oscillator Development and Application for Flow Control
,”
AIAA
Paper No. 2013–2474.10.2514/6.2013-2474
12.
Tesař
,
V.
,
Zhong
,
S.
, and
Rasheed
,
F.
,
2013
, “
New Fluidic-Oscillator Concept for Flow-Separation Control
,”
AIAA J.
,
51
(
2
), pp.
397
405
.10.2514/1.J051791
13.
Simões
,
E. W.
,
Furlan
,
R.
,
Bruzetti Leminski
,
R. E.
,
Gongora-Rubio
,
M. R.
,
Pereira
,
M. T.
,
Morimoto
,
N. I.
, and
Santiago Avilés
,
J. J.
,
2005
, “
Microfluidic Oscillator for Gas Flow Control and Measurement
,”
Flow Meas. Instrum.
,
16
(
1
), pp.
7
12
.10.1016/j.flowmeasinst.2004.11.001
14.
Sun
,
C.
,
Lin
,
Y. J.
,
Rau
,
C.-I.
, and
Chiu
,
S.-Y.
,
2017
, “
Flow Characterization and Mixing Performance of Weakly-Shear-Thinning Fluid Flows in a Microfluidic Oscillator
,”
J. Non-Newton. Fluid Mech.
,
239
, pp.
1
12
.10.1016/j.jnnfm.2016.11.003
15.
Hiroki
,
F.
,
Yamamoto
,
K.
, and
Nasuda
,
T.
,
1993
, “
Fluidic Oscillator Using a Supersonic Bistable Device and Its Oscillation Frequency
,”
J. Fluid Control
,
21
(
4
), pp.
28
47
.
16.
Herbert
,
M. V.
, and
Herd
,
R. J.
,
1964
, “
Boundary-Layer Separation in Supersonic Propelling Nozzles
,”
Aeronautical Research Council
, Cranfield, UK, Report No. 1966 R M, 3421.
17.
Thompson
,
R. V.
,
1970
, “
Supersonic Fluidics Empirical Design Data
,”
Proceedings of the Fourth Cranfield Fluidics Conference
,
British Hydromechanic Research Association
,
Coventry, UK
, Mar. 17–20, pp.
N2-17
N2-44
.
18.
Bavagnoli
,
F.
,
1968
, “
Experimental Study on Supersonic Fluid Amplifiers
,”
Proceedings of the Third Cranfield Fluidics Conference
,
British Hydromechanics Research Association
,
Turin, Italy
, May 8–10, pp.
F8-113
F8-127.
19.
Woody
,
C. D.
,
1967
, “
Characterization of an Adaptive Filter for the Analysis of Variable Latency Neuroelectric Signals
,”
Med. Biol. Eng.
,
5
(
6
), pp.
539
554
.10.1007/BF02474247
20.
Xu
,
S.
,
Ryzer
,
E.
, and
Rankin
,
G. W.
,
2022
, “
A Robust Pseudo-Three-Dimensional Computational Fluid Dynamic Approach for Industrial Applications
,”
ASME J. Fluids Eng.
,
144
(
9
), p.
094502
.10.1115/1.4053970
21.
Xu
,
S.
,
2018
, “
Experimental Investigation of a Bi-Stable Supersonic Fluidic Oscillator
,”
MASc
,
University of Windsor, Windsor, ON, Canada
.
22.
Balabel
,
A.
,
Hegab
,
A. M.
,
Nasr
,
M.
, and
El-Behery
,
S. M.
,
2011
, “
Assessment of Turbulence Modeling for Gas Flow in Two-Dimensional Convergent–Divergent Rocket Nozzle
,”
Appl. Math. Model.
,
35
(
7
), pp.
3408
3422
.10.1016/j.apm.2011.01.013
23.
Kader
,
B. A.
,
1981
, “
Temperature and Concentration Profiles in Fully Turbulent Boundary Layers
,”
Int. J. Heat Mass Transfer
,
24
(
9
), pp.
1541
1544
.10.1016/0017-9310(81)90220-9
24.
Paramanantham
,
V.
,
Janakiram
,
S.
, and
Gopalapillai
,
R.
,
2022
, “
Prediction of Mach Stem Height in Compressible Open Jets. Part 1—Overexpanded Jets
,”
J. Fluid Mech.
,
942
, p.
A48
.10.1017/jfm.2022.374
25.
Sang
,
Y.
,
Shan
,
Y.
,
Zhang
,
J.
,
Tan
,
X.
, and
Lyu
,
Y.
,
2021
, “
Numerical Investigation on Flow Mechanism in a Supersonic Fluidic Oscillator
,”
Chin. J. Aeronaut.
,
34
(
5
), pp.
214
223
.10.1016/j.cja.2020.10.015
You do not currently have access to this content.