Abstract

Microchannel flow is of great interest across many disciplines and applications, from biochemical diagnostics to thermal management systems. Nonetheless, such flow requires large pumping power due to its small cross-sectional length scale. Textured surfaces have shown encouraging results in terms of drag reduction in external flows and at larger scales (turbulent regime). However, there have been some discrepancies in the literature regarding the possibility of drag/friction reduction in microscale internal flows (laminar regime), which is believed to be due to the absence of a proper definition for the reference baseline. The main goal of this paper is to determine whether the (rectangular) textures lead to drag/friction reduction while comparing their results with the correct reference. The rectangular trenches have been introduced on the side walls of the microchannels/microgaps to understand the underlying frictional physics by conducting numerical simulations and experiments. The effect of geometrical parameters of the rectangular trenches as well as the Reynolds number has been investigated on characteristics of the flow. A thorough analysis has been performed using a neural network (NN) to evaluate the potential drag reduction in textured microchannels. The results showed that using the correct reference baseline, no drag reduction was observed in textured microchannels with rectangular trenches. Moreover, the width-to-depth aspect ratio of the trenches and roughness (texture size to mean microchannel dimension) are introduced to be critical parameters in the flow behavior inside textured microchannels.

References

1.
Abdulbari
,
H. A.
,
Yunus
,
R. M.
,
Abdurahman
,
N. H.
, and
Charles
,
A.
,
2013
, “
Going Against the Flow-A Review of Non-Additive Means of Drag Reduction
,”
J. Ind. Eng. Chem.
,
19
(
1
), pp.
27
36
.10.1016/j.jiec.2012.07.023
2.
Mahmoudabadbozchelou
,
M.
,
Rabiei
,
N.
, and
Bazargan
,
M.
,
2018
, “
Numerical and Experimental Investigation of the Optimization of Vehicle Speed and Inter-Vehicle Distance in an Automated Highway Car Platoon to Minimize Fuel Consumption
,”
SAE Intl. J CAV
,
1
(
1
), pp.
3
12
.10.4271/12-01-01-0001
3.
Kant
,
K.
, and
Pitchumani
,
R.
,
2021
, “
Laminar Drag Reduction in Microchannels With Liquid Infused Textured Surfaces
,”
Chem. Eng. Sci.
,
230
, p.
116196
.10.1016/j.ces.2020.116196
4.
Chitsaz
,
N.
,
Siddiqui
,
K.
,
Marian
,
R.
, and
Chahl
,
J. S.
,
2021
, “
Numerical and Experimental Analysis of 3D Micro-Corrugated Wing in Gliding Flight
,”
ASME J. Fluids Eng.
,
144
(
1
), p. 011205.10.1115/1.4051649
5.
Kandlikar
,
S. G.
,
2008
, “
Exploring Roughness Effect on Laminar Internal Flow–Are We Ready for Change?
,”
Nanoscale Microscale Thermophys. Eng.
,
12
(
1
), pp.
61
82
.10.1080/15567260701866728
6.
Chai
,
L.
,
Xia
,
G. D.
, and
Wang
,
H. S.
,
2016
, “
Parametric Study on Thermal and Hydraulic Characteristics of Laminar Flow in Microchannel Heat Sink With Fan-Shaped Ribs on Sidewalls – Part 1: Heat Transfer
,”
Int. J. Heat Mass Transfer
,
97
, pp.
1069
1080
.10.1016/j.ijheatmasstransfer.2016.02.077
7.
Lee
,
C.
, and
Kim
,
C.-J.
,
2011
, “
Underwater Restoration and Retention of Gases on Superhydrophobic Surfaces for Drag Reduction
,”
Phys. Rev. Lett.
,
106
(
1
), p.
14502
.10.1103/PhysRevLett.106.014502
8.
Li
,
P.
,
Campbell
,
M.
,
Zhang
,
N.
, and
Eckels
,
S. J.
,
2022
, “
Investigation of Relationship Between Flow Structures and Drag Forces on Microfin Enhanced Surfaces Using Large Eddy Simulations
,”
ASME J. Fluids Eng.
,
144
(
10
), pp.
1
12
.10.1115/1.4054425
9.
Bhushan
,
B.
,
2009
, “
Biomimetics: Lessons From Nature - An Overview
,”
Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
,
367
(
1893
), pp.
1445
1486
.10.1098/rsta.2009.0011
10.
Chen
,
H.
,
Rao
,
F.
,
Shang
,
X.
,
Zhang
,
D.
, and
Hagiwara
,
I.
,
2013
, “
Biomimetic Drag Reduction Study on Herringbone Riblets of Bird Feather
,”
J. Bionic Eng.
,
10
(
3
), pp.
341
349
.10.1016/S1672-6529(13)60229-2
11.
Viswanath
,
P. R.
,
2002
, “
Aircraft Viscous Drag Reduction Using Riblets
,”
Prog. Aerosp. Sci.
,
38
(
6–7
), pp.
571
600
.10.1016/S0376-0421(02)00048-9
12.
Bechert
,
D. W.
, and
Hage
,
W.
,
2006
, “
Drag Reduction With Riblets in Nature and Engineering
,”
Flow Phenomena in Nature: Inspiration, Learning and Applications
, Vol.
2
, WIT Press, Southampton, UK, pp.
457
469
.
13.
Büttner
,
C. C.
, and
Schulz
,
U.
,
2011
, “
Shark Skin Inspired Riblet Structures as Aerodynamically Optimized High Temperature Coatings for Blades of Aeroengines
,”
Smart Mater. Struct.
,
20
(
9
), p.
094016
.10.1088/0964-1726/20/9/094016
14.
Stenzel
,
V.
,
Wilke
,
Y.
, and
Hage
,
W.
,
2011
, “
Drag-Reducing Paints for the Reduction of Fuel Consumption in Aviation and Shipping
,”
Prog. Org. Coat.
,
70
(
4
), pp.
224
229
.10.1016/j.porgcoat.2010.09.026
15.
Luo
,
Y.
, and
Zhang
,
D.
,
2012
, “
Experimental Research on Biomimetic Drag-Reducing Surface Application in Natural Gas Pipelines
,”
Oil Gas Eur. Mag.
,
38
(
4
), pp.
213
214
.https://www.osti.gov/etdeweb/biblio/22040849
16.
Stefani
,
R.
,
2012
, “
Olympic Swimming Gold: The Suit or the Swimmer in the Suit?
,”
Significance
,
9
(
2
), pp.
13
17
.10.1111/j.1740-9713.2012.00553.x
17.
Luo
,
Y.
,
Yuan
,
L.
,
Li
,
J.
, and
Wang
,
J.
,
2015
, “
Boundary Layer Drag Reduction Research Hypotheses Derived From Bio-Inspired Surface and Recent Advanced Applications
,”
Micron
,
79
, pp.
59
73
.10.1016/j.micron.2015.07.006
18.
Liu
,
D.
,
Zhang
,
H.
,
Fontana
,
F.
,
Hirvonen
,
J. T.
, and
Santos
,
H. A.
,
2017
, “
Microfluidic-Assisted Fabrication of Carriers for Controlled Drug Delivery
,”
Lab Chip
,
17
(
11
), pp.
1856
1883
.10.1039/C7LC00242D
19.
Hidrovo
,
C.
, and
Kenneth
,
G.
,
2008
, “
Active Microfluidic Cooling of Integrated Circuits
,”
Electrical, Optical and Thermal Interconnections for 3D Integrated Systems
, Artech, Boston, MA, pp.
293
330
.
20.
Ahmed
,
S.
,
Ismail
,
A. F.
,
Sulaeman
,
E.
, and
Hasan
,
M. H.
,
2019
, “
Experimental Correlation for Flow-Boiling Heat Transfer in a Micro-Gap Evaporator With Internal Micro-Fins
,”
J. Adv. Res. Fluid Mech. Therm. Sci.
,
54
, pp.
1
8
.https://www.akademiabaru.com/submit/index.php/arfmts/article/view/2429
21.
Alam
,
T.
,
Lee
,
P. S.
,
Yap
,
C. R.
, and
Jin
,
L.
,
2013
, “
A Comparative Study of Flow Boiling Heat Transfer and Pressure Drop Characteristics in Microgap and Microchannel Heat Sink and An Evaluation of Microgap Heat Sink for Hotspot Mitigation
,”
Int. J. Heat Mass Transfer
,
58
(
1–2
), pp.
335
347
.10.1016/j.ijheatmasstransfer.2012.11.020
22.
Majhi
,
M.
,
Nayak
,
A. K.
, and
Banerjee
,
A.
,
2020
, “
Enhanced Electro-Osmotic Flow of Power-Law Fluids in Hydrophilic Patterned Nanochannel
,”
ASME J. Fluids Eng.
,
142
(
10
), p. 101201.10.1115/1.4047395
23.
Banerjee
,
A.
,
Nayak
,
A. K.
, and
Weigand
,
B.
,
2020
, “
A Comparative Analysis of Mixing Performance of Power-Law Fluid in Cylindrical Microchannels With Sudden Contraction/Expansion
,”
ASME J. Fluids Eng.
,
142
(
6
), p. 061201.10.1115/1.4045617
24.
Gatski
,
T.
, and
Grosch
,
C.
,
1985
, “
Embedded Cavity Drag in Steady Laminar Flow
,”
AIAA J.
,
23
(
7
), pp.
1028
1037
.10.2514/3.9034
25.
Mohammadi
,
A.
, and
Floryan
,
J. M.
,
2015
, “
Numerical Analysis of Laminar-Drag-Reducing Grooves
,”
ASME J. Fluids Eng.
,
137
(
4
), p. 041201.10.1115/1.4028842
26.
Chai
,
L.
,
Xia
,
G. D.
, and
Wang
,
H. S.
,
2016
, “
Parametric Study on Thermal and Hydraulic Characteristics of Laminar Flow in Microchannel Heat Sink With Fan-Shaped Ribs on Sidewalls—Part 2: Pressure Drop
,”
Int. J. Heat Mass Transfer
,
97
, pp.
1081
1090
.10.1016/j.ijheatmasstransfer.2016.02.076
27.
Lang
,
A. W.
, and
Johnson
,
T. J.
,
2010
, “
Drag Reduction Over Embedded Cavities in Couette Flow
,”
Mech. Res. Commun.
,
37
, pp.
432
435
.10.1016/j.mechrescom.2010.04.011
28.
Rawool
,
A. S.
,
Mitra
,
S. K.
, and
Kandlikar
,
S. G.
,
2006
, “
Numerical Simulation of Flow Through Microchannels With Designed Roughness
,”
Microfluid. Nanofluid.
,
2
(
3
), pp.
215
221
.10.1007/s10404-005-0064-5
29.
Djenidi
,
L.
,
Anselmet
,
F.
,
Liandrat
,
J.
, and
Fulachier
,
L.
,
1994
, “
Laminar Boundary Layer Over Riblets
,”
Phys. Fluids
,
6
(
9
), pp.
2993
2999
.10.1063/1.868429
30.
Daschiel
,
G.
,
Peric
,
M.
,
Jovanovic
,
J.
, and
Delgado
,
A.
,
2013
, “
The Holy Grail of Microfluidics: Sub-Laminar Drag by Layout of Periodically Embedded Microgrooves
,”
Microfluid. Nanofluid.
,
15
(
5
), pp.
675
687
.10.1007/s10404-013-1182-0
31.
Bixler
,
G. D.
, and
Bhushan
,
B.
,
2013
, “
Bioinspired Micro/Nanostructured Surfaces for Oil Drag Reduction in Closed Channel Flow
,”
Soft Matter
,
9
(
5
), pp.
1620
1635
.10.1039/C2SM27070F
32.
Wang
,
L.
,
Wang
,
C.
,
Wang
,
S.
,
Sun
,
G.
, and
You
,
B.
,
2021
, “
Design and Analysis of Micro-Nano Scale Nested-Grooved Surface Structure for Drag Reduction Based on ‘Vortex-Driven Design’
,”
Eur. J. Mech. B/Fluids
,
85
, pp.
335
350
.10.1016/j.euromechflu.2020.10.007
33.
Ghaddar
,
N. K.
,
Korczak
,
K. Z.
,
Mikic
,
B. B.
, and
Patera
,
A. T.
,
1986
, “
Numerical Investigation of Incompressible Flow in Grooved Channels. Part 1, Stability Self-Sustained Oscillations
,”
J. Fluid Mech.
,
163
, pp.
99
127
.10.1017/S0022112086002227
34.
Asadzadeh
,
H.
,
Moosavi
,
A.
, and
Etemadi
,
A.
,
2019
, “
Numerical Simulation of Drag Reduction in Microgrooved Substrates Using Lattice-Boltzmann Method
,”
ASME J. Fluids Eng.
,
141
(
7
), p. 071111.10.1115/1.4042888
35.
Kharati-Koopaee
,
M.
, and
Zare
,
M.
,
2015
, “
Effect of Aligned and Offset Roughness Patterns on the Fluid Flow and Heat Transfer Within Microchannels Consist of Sinusoidal Structured Roughness
,”
Int. J. Therm. Sci.
,
90
, pp.
9
23
.10.1016/j.ijthermalsci.2014.11.031
36.
Xu
,
F.
,
Zhong
,
S.
, and
Zhang
,
S.
,
2018
, “
Vortical structures and Development of Laminar Flow Over Convergent-Divergent Riblets
,”
Phys. Fluids
,
30
(
5
), p.
051901
.10.1063/1.5027522
37.
Guo
,
T.
,
Zhong
,
S.
, and
Craft
,
T.
,
2020
, “
Control of Laminar Flow Separation Over a Backward-Facing Rounded Ramp With C-D Riblets – The Effects of Riblet Height, Spacing and Yaw Angle
,”
Int. J. Heat Fluid Flow
,
85
, p.
108629
.10.1016/j.ijheatfluidflow.2020.108629
38.
Raayai-Ardakani
,
S.
, and
McKinley
,
G. H.
,
2017
, “
Drag Reduction Using Wrinkled Surfaces in High Reynolds Number Laminar Boundary Layer Flows
,”
Phys. Fluids
,
29
(
9
), p.
093605
.10.1063/1.4995566
39.
Wang
,
Y.
,
2018
, “
Effects of Grooves on Drag in Laminar Channel Flow
,” Electronic Thesis and Dissertation Repository, 5487, The University of Western Ontario, London, ON, Canada, accessed Feb. 2, 2023, https://ir.lib.uwo.ca/etd/5487
You do not currently have access to this content.