Abstract

Computational fluid dynamics (CFD) is employed to study incompressible and steady laminar flow in the hydrodynamic entrance region of circular pipes for a wide range of Reynolds numbers. Dimensionless analytic expressions for streamwise variations of the centerline velocity, skin friction coefficient, and pressure drop are derived by applying a two-stage nonlinear regression analysis to computational solutions of the Navier–Stokes equations for various Reynolds numbers between 1 and 2000. Similar expressions are also presented for the correction factors for the momentum and kinetic energy fluxes. First, the correlation parameters for a flow variable are obtained for each Reynolds number considered. Subsequently, a second nonlinear regression analysis is conducted to obtain another set of equations for the variation of fitting parameters with the Reynolds number. Constant parameter correlations are also given for the Reynolds number range between 200 and 2000, which are less accurate than the expressions containing Reynolds number-dependent terms. The correlations presented here are also valid for flows with heat transfer, under the assumptions of constant property and zero buoyancy.

References

1.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
,
Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data
,
Academic Press
,
New York
.
2.
Shah
,
R. K.
,
1978
, “
A Correlation for Laminar Hydrodynamic Entry Length Solutions for Circular and Noncircular Ducts
,”
ASME J. Fluids Eng.
,
100
(
2
), pp.
177
179
.10.1115/1.3448626
3.
Li
,
H.
,
Li
,
Y.
,
Huang
,
B.
, and
Xu
,
T.
,
2019
, “
Flow Characteristics of the Entrance Region With Roughness Effect Within Rectangular Microchannels
,”
Micromachines
,
11
(
1
), pp.
30
47
.10.3390/mi11010030
4.
Colin
,
S.
,
2012
, “
Gas Microflows in the Slip Flow Regime: A Critical Review on Convective Heat Transfer
,”
ASME J. Heat Mass Transfer
,
134
(
2
), p.
020908
.10.1115/1.4005063
5.
Rehman
,
D.
,
Barattini
,
D.
,
Hong
,
C.
, and
Morini
,
G. L.
,
2021
, “
Effect of Aspect Ratio and Inlet Manifold Shape on the Laminar-to-Turbulent Transition of Gas Flow in Rectangular Microchannels
,”
Exp. Fluids
,
62
(
3
), p. 52.10.1007/s00348-021-03137-3
6.
Sharp
,
K. V.
, and
Adrian
,
R. J.
,
2004
, “
Transition From Laminar to Turbulent Flow in Liquid Filled Microtubes
,”
Exp. Fluids
,
36
(
5
), pp.
741
747
.10.1007/s00348-003-0753-3
7.
White
,
F.
,
2015
,
Fluid Mechanics
, 8th ed.,
McGraw-Hill
,
New York
.
8.
Elger
,
D. F.
,
Williams
,
B. C.
,
Crowe
,
C. T.
, and
Roberson
,
J. A.
,
2014
,
Engineering Fluid Mechanics
, 10th ed.,
Wiley
,
New York
.
9.
Cengel
,
Y.
,
Cimbala
,
J.
, and
Ghajar
,
A.
,
2022
,
Fundamentals of Thermal-Fluid Sciences
, 6th ed.,
McGraw-Hill
,
New York
.
10.
Fargie
,
D.
, and
Martin
,
B. W.
,
1971
, “
Developing Laminar Flow in a Pipe of Circular Cross Section
,”
Proc. R. Soc. London, Ser. A
,
321
(
1547
), pp.
461
476
.10.1098/rspa.1971.0043
11.
Haustein
,
H. D.
, and
Kashi
,
B.
,
2019
, “
Distortion of Pipe-Flow Development by Boundary Layer Growth and Unconstrained Inlet Conditions
,”
Phys. Fluids
,
31
(
6
), p.
063602
.10.1063/1.5091602
12.
Mohanty
,
A. K.
, and
Asthana
,
S. B. L.
,
1979
, “
Laminar Flow in the Entrance Region of a Smooth Pipe
,”
J. Fluid Mech.
,
90
(
3
), pp.
433
447
.10.1017/S0022112079002330
13.
Chen
,
R. Y.
,
1973
, “
Flow in the Entrance Region at Low Reynolds Numbers
,”
ASME J. Fluids Eng.
,
95
(
1
), pp.
153
158
.10.1115/1.3446948
14.
Sparrow
,
E. M.
,
Lin
,
S. H.
, and
Lundgren
,
T. S.
,
1964
, “
Flow Development in the Hydrodynamic Entrance Region of Tubes and Ducts
,”
Phys. Fluids
,
7
(
3
), pp.
338
347
.10.1063/1.1711204
15.
Hornbeck
,
R. W.
,
1964
, “
Laminar Flow in the Entrance Region of a Pipe
,”
Appl. Sci. Res., Sect. A
,
13
(
1
), pp.
224
232
.10.1007/BF00382049
16.
Shimomukai
,
K.
, and
Kanda
,
H.
,
2008
, “
Numerical Study of Normal Pressure Distribution in Entrance Pipe Flow
,”
Electron. Trans. Numer. Anal.
,
30
, pp.
10
25
.https://www.elibm.org/article/10006127
17.
Friedmann
,
M.
,
Gillis
,
J.
, and
Liron
,
N.
,
1968
, “
Laminar Flow in a Pipe at Low and Moderate Reynolds Numbers
,”
Appl. Sci. Res.
,
19
(
1
), pp.
426
438
.10.1007/BF00383937
18.
Dombrowski
,
N.
,
Foumeny
,
E. A.
,
Ookawara
,
S.
, and
Riza
,
A.
,
1993
, “
The Influence of Reynolds Number on the Entry Length and Pressure Drop for Laminar Flow
,”
Can. J. Chem. Eng.
,
71
(
3
), pp.
472
476
.10.1002/cjce.5450710320
19.
Kountouriotis
,
Z.
,
Philippou
,
M.
, and
Georgiou
,
G. C.
,
2016
, “
Development Lengths in Newtonian Poiseuille Flow With Wall Slip
,”
Appl. Math. Comput.
,
291
, pp.
98
114
.10.1016/j.amc.2016.06.041
20.
Durst
,
F.
,
Ray
,
S.
,
Ünsal
,
B.
, and
Bayoumi
,
O. A.
,
2005
, “
The Development Lengths of Laminar Pipe and Channel Flows
,”
ASME J. Fluids Eng.
,
127
(
6
), pp.
1154
1160
.10.1115/1.2063088
21.
Reci
,
A.
,
Sederman
,
A. J.
, and
Gladden
,
L. F.
,
2018
, “
Experimental Evidence of Velocity Profile Inversion in Developing Laminar Flow Using Magnetic Resonance Velocimetry
,”
J. Fluid Mech.
,
851
, pp.
545
557
.10.1017/jfm.2018.512
22.
Muzychka
,
Y. S.
, and
Yovanovich
,
M. M.
,
2009
, “
Pressure Drop in Laminar Developing Flow in Noncircular Ducts: A Scaling and Modeling Approach
,”
ASME J. Fluids Eng.
,
131
(
11
), p.
111105
.10.1115/1.4000377
23.
Gad-el-Hak
,
M.
,
1999
, “
The Fluid Mechanics of Microdevices - The Freeman Scholar Lecture
,”
ASME J. Fluids Eng.
,
121
(
1
), pp.
5
33
.10.1115/1.2822013
24.
Duan
,
Z.
, and
Muzychka
,
Y. S.
,
2010
, “
Slip Flow in the Hydrodynamic Entrance Region of Circular and Noncircular Microchannels
,”
ASME J. Fluids Eng.
,
132
(
1
), p.
011201
.10.1115/1.4000692
25.
Shah
,
R. K.
, and
Bhatti
,
M. S.
,
1987
, “
Laminar Convective Heat Transfer in Ducts
,” in
Handbook of Single Phase Convective Heat Transfer
, edited by
S.
Kakaç
,
R. K.
Shah
, and
W.
Aung
, Vol.
3
,
Wiley
,
New York
, pp.
137
172
.
26.
Tam
,
L. M.
, and
Ghajar
,
A. J.
,
1997
, “
Effect of Inlet Geometry and Heating on the Fully Developed Friction Factor in the Transition Region of a Horizontal Tube
,”
Exp. Therm. Fluid Sci.
,
15
(
1
), pp.
52
64
.10.1016/S0894-1777(97)00035-6
27.
Weigand
,
B.
, and
Abdelmoula
,
M.
,
2014
, “
Axial Heat Conduction Effects in the Entrance Region of Laminar Duct Flows: Correlations for the Local Nusselt Number
,”
Int. Commun. Heat Mass Transfer
,
51
, pp.
45
50
.10.1016/j.icheatmasstransfer.2014.01.004
28.
Rhie
,
C. M.
, and
Chow
,
W. L.
,
1983
, “
Numerical Study of the Turbulent Flow Past an Airfoil With Trailing Edge Separation
,”
AIAA J.
,
21
(
11
), pp.
1525
1532
.10.2514/3.8284
29.
Roache
,
P. J.
,
1994
, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
405
413
.10.1115/1.2910291
You do not currently have access to this content.