Abstract

The study aimed to assess the flow characteristics of water–air and silicone oil–air in a vertical upward pipe, utilizing computational fluid dynamics (CFD) simulations with the volume of fluid (VOF) model. Structured meshes with various resolutions were employed to ensure mesh independence, and the k–ε realizable model addressed turbulence. Simulations were conducted in a vertical pipe with a diameter of 67 mm, while varying superficial gas velocities. The investigation focused on the impact of superficial gas velocity on flow patterns, radial void fractions, void fraction time series, probability density functions (PDFs), and mean void fractions. Results indicated a transition in flow patterns with increasing superficial gas velocities: water–air shifted from cap-bubbly to churn flow, and silicone oil–air transitioned from bubbly to annular flow. Notably, annular flow was observed in silicone oil even at low gas velocity. Substantial alterations were observed in radial void fraction profiles corresponding to changing flow patterns. Void fraction time series showed higher fluctuations for water compared to silicone oil, and PDFs identified regimes. Mean void fraction consistently demonstrated higher values for silicone oil compared to water across all flow conditions. The CFD results were validated against experiments, demonstrating good agreement. Furthermore, the validated model was applied to predict pressure drops and liquid velocities between the two systems. Silicone oil exhibited lower pressure drops compared to water. Significant differences in liquid velocities were observed between the two systems at 0.05 m/s and 5.71 m/s, emphasizing the impact of fluid properties.

References

1.
Abdulkadir
,
M.
,
2011
, “
Experimental and Computational Fluid Dynamics (CFD) Studies of Gas-Liquid Flow in Bends
,”
Ph.D. thesis
,
University of Nottingham
,
Nottingham, UK
.https://eprints.nottingham.ac.uk/id/eprint/12218
2.
Shang
,
Z.
,
Lou
,
J.
, and
Li
,
H.
,
2017
, “
Simulations of Flow Transitions in a Vertical Pipe Using Coupled Level Set and VOF Method
,”
Int. J. Comput. Methods
,
14
(
2
), p.
1750013
.10.1142/S021987621750013X
3.
Szalinski
,
L.
,
Abdulkareem
,
L. A.
,
Da Silva
,
M. J.
,
Thiele
,
S.
,
Beyer
,
M.
,
Lucas
,
D.
,
Hernandez-Perez
,
V.
,
Hampel
,
U.
, and
Azzopardi
,
B. J.
,
2010
, “
Comparative Study of Gas-Oil and Gas-Water Two-Phase Flow in a Vertical Pipe
,”
Chem. Eng. Sci.
,
65
(
12
), pp.
3836
3848
.10.1016/j.ces.2010.03.024
4.
Abdulkadir
,
M.
,
Jatto
,
D. G.
,
Abdulkareem
,
L. A.
, and
Zhao
,
D.
,
2020
, “
Pressure Drop, Void Fraction and Flow Pattern of Vertical Air–Silicone Oil Flows Using Differential Pressure Transducer and Advanced Instrumentation
,”
Chem. Eng. Res. Des.
,
159
, pp.
262
277
.10.1016/j.cherd.2020.04.009
5.
Raeiszadeh
,
F.
,
Hajidavalloo
,
E.
,
Behbahaninejad
,
M.
, and
Hanafizadeh
,
P.
,
2018
, “
Modeling and Simulation of Downward Vertical Two-Phase Flow With Pipe Rotation
,”
Chem. Eng. Res. Des.
,
137
, pp.
10
19
.10.1016/j.cherd.2018.07.002
6.
Furukawa
,
T.
, and
Fukano
,
T.
,
2001
, “
Effects of Liquid Viscosity on Flow Patterns in Vertical Upward Gas-Liquid Two-Phase Flow
,”
Int. J. Multiphase Flow
,
27
(
6
), pp.
1109
1126
.10.1016/S0301-9322(00)00066-5
7.
Yamazaki
,
Y.
, and
Yamaguchi
,
K.
,
1979
, “
Characteristics of Cocurrent Two-Phase Downflow in Tubes: Flow Pattern, Void Fraction, Pressure Drop
,”
J. Nucl. Sci. Technol.
,
16
(
4
), pp.
245
255
.10.1080/18811248.1979.9730898
8.
Taitel
,
Y.
,
Barnea
,
D.
, and
Dukler
,
A. E.
,
1980
, “
Modelling Flow Pattern Transitions for Steady Upward Gas‐Liquid Flow in Vertical Tubes
,”
AIChE J.
,
26
(
3
), pp.
345
354
.10.1002/aic.690260304
9.
Wu
,
Y.
,
Li
,
H.
,
Wang
,
M.
, and
Williams
,
R. A.
,
2008
, “
Characterization of Air-Water Two-Phase Vertical Flow by Using Electrical Resistance Imaging
,”
Can. J. Chem. Eng.
,
83
(
1
), pp.
37
41
.10.1002/cjce.5450830107
10.
Mishima
,
K.
, and
Ishii
,
M.
,
1984
, “
Flow Regime Transition Criteria for Upward Two-Phase Flow in Vertical Tubes
,”
Int. J. Heat Mass Transfer
,
27
(
5
), pp.
723
737
.10.1016/0017-9310(84)90142-X
11.
Jiang
,
Y.
, and
Rezkallah
,
K. S.
,
1993
, “
A Study on Void Fraction in Vertical Co-Current Upward and Downward Two-Phase Gas-Liquid Flow—I: Experimental Results
,”
Chem. Eng. Commun.
,
126
(
1
), pp.
221
243
.10.1080/00986449308936220
12.
Abdulkadir
,
M.
,
Hernandez-Perez
,
V.
,
Lowndes
,
I. S.
,
Azzopardi
,
B. J.
, and
Brantson
,
E. T.
,
2014
, “
Detailed Analysis of Phase Distributions in a Vertical Riser Using Wire Mesh Sensor (WMS)
,”
Exp. Therm. Fluid Sci.
,
59
, pp.
32
42
.10.1016/j.expthermflusci.2014.07.010
13.
Abdulkadir
,
M.
,
Hernandez-Perez
,
V.
,
Kwatia
,
C. A.
, and
Azzopardi
,
B. J.
,
2018
, “
Interrogating Flow Development and Phase Distribution in Vertical and Horizontal Pipes Using Advanced Instrumentation
,”
Chem. Eng. Sci.
,
186
, pp.
152
167
.10.1016/j.ces.2018.04.039
14.
Woldesemayat
,
M. A.
, and
Ghajar
,
A. J.
,
2007
, “
Comparison of Void Fraction Correlations for Different Flow Patterns in Horizontal and Upward Inclined Pipes
,”
Int. J. Multiphase Flow
,
33
(
4
), pp.
347
370
.10.1016/j.ijmultiphaseflow.2006.09.004
15.
Bhagwat
,
S. M.
, and
Ghajar
,
A. J.
,
2012
, “
Similarities and Differences in the Flow Patterns and Void Fraction in Vertical Upward and Downward Two Phase Flow
,”
Exp. Therm. Fluid Sci.
,
39
, pp.
213
227
.10.1016/j.expthermflusci.2012.01.026
16.
Lockhart
,
R. W.
, and
Martinelli
,
R. C.
,
1949
, “
Proposed Correlation of Data for Isothermal Two-Phase, Two-Component Flow in Pipes
,”
Chem. Eng. Prog.
,
45
(
1
), pp.
39
48
.https://dns2.asia.edu.tw/~ysho/YSHOEnglish/2000%20CE/PDF/Che%20Eng%20Pro45,%2039.pdf
17.
Orkiszewski
,
J.
,
1967
, “
Predicting Two-Phase Pressure Drops in Vertical Pipe
,”
J. Pet. Technol.
,
19
(
6
), pp.
829
838
.10.2118/1546-PA
18.
Chisholm
,
D.
,
1973
, “
Pressure Gradients Due to Friction During the Flow of Evaporating Two-Phase Mixtures in Smooth Tubes and Channels
,”
Int. J. Heat Mass Transfer
,
16
(
2
), pp.
347
358
.10.1016/0017-9310(73)90063-X
19.
Griffith
,
P.
,
1962
, “
Two-Phase Flow in Pipes
,”
Special Summer Program
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
20.
Bhagwat
,
S. M.
, and
Ghajar
,
A. J.
,
2014
, “
A Flow Pattern Independent Drift Flux Model Based Void Fraction Correlation for a Wide Range of Gas-Liquid Two Phase Flow
,”
Int. J. Multiphase Flow
,
59
, pp.
186
205
.10.1016/j.ijmultiphaseflow.2013.11.001
21.
Wang
,
S.
,
Zhang
,
H. Q.
,
Sarica
,
C.
, and
Pereyra
,
E.
,
2014
, “
A Mechanistic Slug-Liquid-Holdup Model for Different Oil Viscosities and Pipe-Inclination Angles
,”
SPE Prod. Oper.
,
29
(
4
), pp.
329
336
.10.2118/171563-PA
22.
Guerrero
,
E.
,
Munoz
,
F.
, and
Ratkovich
,
N.
,
2017
, “
Comparison Between Eulerian and VOF Models for Two-Phase Flow Assessment in Vertical Pipes
,”
CTF-Cienc., Tecnol. Futuro
,
7
(
1
), pp.
73
84
.10.29047/01225383.66
23.
ANSYS
,
2016
,
ANSYS FLUENT Theory Guide, Release 17.2
,
ANSYS
,
Canonsburg, PA
.
24.
Mohmmed
,
A. O.
,
Nasif
,
M. S.
, and
Al-Kayiem
,
H. H.
,
2018
, “
Numerical Investigation of Slug Characteristics in a Horizontal Air/Water and Air/Oil Pipe Flow
,”
Prog. Comput. Fluid Dyn.
,
18
(
4
), pp.
241
256
.10.1504/PCFD.2018.093575
25.
Hossain
,
M.
,
Chinenye-Kanu
,
N. M.
,
Droubi
,
G. M.
, and
Islam
,
S. Z.
,
2019
, “
Investigation of Slug-Churn Flow Induced Transient Excitation Forces at Pipe Bend
,”
J. Fluids Struct.
,
91
, p.
102733
.10.1016/j.jfluidstructs.2019.102733
26.
Hassani
,
M.
,
Motlagh
,
M. B.
, and
Kouhikamali
,
R.
,
2020
, “
Numerical Investigation of Upward Air-Water Annular, Slug and Bubbly Flow Regimes
,”
J. Comput. Appl. Res. Mech. Eng.
,
9
(
2
), pp.
331
341
.10.22061/jcarme.2019.3893.1453
27.
Abdulwahid
,
M. A.
,
Kareem
,
H. J.
, and
Almudhaffar
,
M. A.
,
2017
, “
Numerical Analysis of Two Phase Flow Patterns in Vertical and Horizontal Pipes
,”
WSEAS Trans. Fluid Mech.
,
12
, pp.
131
140
.https://wseas.com/journals/fluids/2017/a305913-137.pdf
28.
Abood
,
S. A.
,
Abdulwahid
,
M. A.
, and
Almudhaffar
,
M. A.
,
2019
, “
Comparison Between the Experimental and Numerical Study of (Air-Oil) Flow Patterns in Vertical Pipe
,”
Case Stud. Therm. Eng.
,
14
, p.
100424
.10.1016/j.csite.2019.100424
29.
Kiran
,
R.
,
Ahmed
,
R.
, and
Salehi
,
S.
,
2020
, “
Experiments and CFD Modelling for Two Phase Flow in a Vertical Annulus
,”
Chem. Eng. Res. Des.
,
153
, pp.
201
211
.10.1016/j.cherd.2019.10.012
30.
Taha
,
T.
, and
Cui
,
Z. F.
,
2006
, “
CFD Modelling of Slug Flow in Vertical Tubes
,”
Chem. Eng. Sci.
,
61
(
2
), pp.
676
687
.10.1016/j.ces.2005.07.022
31.
Abdulkadir
,
M.
,
Hernandez-Perez
,
V.
,
Lo
,
S.
,
Lowndes
,
I. S.
, and
Azzopardi
,
B. J.
,
2015
, “
Comparison of Experimental and Computational Fluid Dynamics (CFD) Studies of Slug Flow in a Vertical Riser
,”
Exp. Therm. Fluid Sci.
,
68
, pp.
468
483
.10.1016/j.expthermflusci.2015.06.004
32.
Imada
,
F. H. J.
,
Saltara
,
F.
, and
Balino
,
J. L.
,
2013
, “
Numerical Study of the Churn-Slug Transition Dynamics in Vertical Upward Air-Water Flows
,”
WIT Trans. Eng. Sci.
,
79
, pp.
101
114
.10.2495/MPF130091
33.
Hanafizadeh
,
P.
,
Moezzi
,
M.
, and
Saidi
,
M. H.
,
2014
, “
Simulation of Gas-Liquid Two Phase Flow in Upriser Pipe of Gas-Lift Systems
,”
Energy Equip. Syst.
,
2
(
1
), pp.
25
42
.10.22059/EES.2014.5013
34.
Wang
,
K.
,
Bai
,
B.
,
Cui
,
J.
, and
Ma
,
W.
,
2012
, “
A Physical Model for Huge Wave Movement in Gas-Liquid Churn Flow
,”
Chem. Eng. Sci.
,
79
, pp.
19
28
.10.1016/j.ces.2012.05.011
35.
Waltrich
,
P. J.
,
Falcone
,
G.
, and
Barbosa
,
J. R.
,
2013
, “
Axial Development of Annular, Churn and Slug Flows in a Long Vertical Tube
,”
Int. J. Multiphase Flow
,
57
, pp.
38
48
.10.1016/j.ijmultiphaseflow.2013.06.008
36.
Azzopardi
,
B. J.
,
Do
,
H. K.
,
Azzi
,
A.
, and
Hernandez Perez
,
V.
,
2015
, “
Characteristics of Air/Water Slug Flow in an Intermediate Diameter Pipe
,”
Exp. Therm. Fluid Sci.
,
60
, pp.
1
8
.10.1016/j.expthermflusci.2014.08.004
37.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.10.1016/0021-9991(81)90145-5
38.
Chinello
,
G.
,
Ayati
,
A. A.
,
McGlinchey
,
D.
,
Ooms
,
G.
, and
Henkes
,
R.
,
2019
, “
Comparison of Computational Fluid Dynamics Simulations and Experiments for Stratified Air-Water Flows in Pipes
,”
ASME J. Fluids Eng.
,
141
(
5
), p.
051302
.10.1115/1.4041667
39.
Nasrfard
,
H.
,
Rahimzadeh
,
H.
,
Ahmadpour
,
A.
, and
Amani
,
E.
,
2019
, “
Simulation of Intermittent Flow Development in a Horizontal Pipe
,”
ASME J. Fluids Eng.
,
141
(
12
), p.
121305
.10.1115/1.4044069
40.
Shi
,
H.
,
Liu
,
Q.
, and
Nikrityuk
,
P.
,
2021
, “
Numerical Study of Mixing of Cavitating Flows in a Venturi Tube
,”
Can. J. Chem. Eng.
,
99
(
3
), pp.
813
828
.10.1002/cjce.23898
41.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.10.1016/0021-9991(92)90240-Y
42.
Parsi
,
M.
,
Agrawal
,
M.
,
Srinivasan
,
V.
,
Vieira
,
R. E.
,
Torres
,
C. F.
,
McLaury
,
B. S.
,
Shirazi
,
S. A.
,
Schleicher
,
E.
, and
Hampel
,
U.
,
2016
, “
Assessment of a Hybrid CFD Model for Simulation of Complex Vertical Upward Gas-Liquid Churn Flow
,”
Chem. Eng. Res. Des.
,
105
, pp.
71
84
.10.1016/j.cherd.2015.10.044
43.
Shih
,
T.-H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New k-ϵ Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.10.1016/0045-7930(94)00032-T
44.
Jaeger
,
J.
,
Santos
,
C. M.
,
Rosa
,
L. M.
,
Meier
,
H. F.
, and
Noriler
,
D.
,
2018
, “
Experimental and Numerical Evaluation of Slugs in a Vertical Air–Water Flow
,”
Int. J. Multiphase Flow
,
101
, pp.
152
166
.10.1016/j.ijmultiphaseflow.2018.01.009
45.
Wei
,
P.
,
Zhang
,
K.
,
Gao
,
W.
,
Kong
,
L.
, and
Field
,
R.
,
2013
, “
CFD Modeling of Hydrodynamic Characteristics of Slug Bubble Flow in a Flat Sheet Membrane Bioreactor
,”
J. Membr. Sci.
,
445
, pp.
15
24
.10.1016/j.memsci.2013.05.036
46.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1972
,
Lectures in Mathematical Models of Turbulence
,
Academic Press
,
London
.
47.
Hernandez-Perez
,
V.
,
Abdulkadir
,
M.
, and
Azzopardi
,
B. J.
,
2011
, “
Grid Generation Issues in the CFD Modelling of Two-Phase Flow in a Pipe
,”
J. Comput. Multiphase Flows
,
3
(
1
), pp.
13
26
.10.1260/1757-482X.3.1.13
48.
Hernandez-Perez
,
V.
,
2007
, “
Gas-Liquid Two-Phase Flow in Inclined Pipes
,”
Ph.D. thesis
,
University of Nottingham
,
Nottingham, UK
.https://www.researchgate.net/profile/Valente-Hernandez-Perez/publication/294583838_Gas-liquid_twophase_flow_in_inclined_pipes/links/5b8f9e5ca6fdcc1ddd0ffece/Gas-liquid-two-phase-flow-ininclined-pipes.pdf
49.
Ratkovich
,
N.
,
Majumder
,
S. K.
, and
Bentzen
,
T. R.
,
2013
, “
Empirical Correlations and CFD Simulations of Vertical Two-Phase Gas–Liquid (Newtonian and Non-Newtonian) Slug
,”
Chem. Eng. Res. Des.
,
91
(
6
), pp.
988
998
.10.1016/j.cherd.2012.11.002
50.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.10.1016/0045-7825(74)90029-2
51.
ANSYS,
2009
,
ANSYS FLUENT Theory Guide, Release 12
,
ANSYS
,
Canonsburg, PA
.
52.
Sultan
,
T.
,
Ahmad
,
S.
, and
Cho
,
J.
,
2016
, “
Numerical Study of the Effects of Surface Roughness on Water Disinfection UV Reactor
,”
Chemosphere
,
148
, pp.
108
117
.10.1016/j.chemosphere.2016.01.005
53.
Pourramezan
,
M.
, and
Ajam
,
H.
,
2016
, “
Modeling for Thermal Augmentation of Turbulent Flow in a Circular Tube Fitted With Twisted Conical Strip Inserts
,”
Appl. Therm. Eng.
,
105
, pp.
509
518
.10.1016/j.applthermaleng.2016.03.029
54.
Meretskaya
,
E.
, and
Eskin
,
D.
,
2021
, “
Forecasting a Bubbly-Intermittent Flow Regime Transition in Helically Coiled Tubes
,”
Chem. Eng. Res. Des.
,
175
, pp.
238
249
.10.1016/j.cherd.2021.09.002
55.
Issa
,
R. I.
,
Gosman
,
A. D.
, and
Watkins
,
A. P.
,
1986
, “
The Computation of Compressible and Incompressible Recirculating Flows by a Non-Iterative Implicit Scheme
,”
J. Comput. Phys.
,
62
(
1
), pp.
66
82
.10.1016/0021-9991(86)90100-2
56.
Rahimi
,
R.
,
Bahramifar
,
E.
, and
Sotoodeh
,
M. M.
,
2013
, “
The Indication of Two-Phase Flow Pattern and Slug Characteristics in a Pipeline Using CFD Method
,”
Gas Process. J.
,
1
(
1
), pp.
70
87
.10.22108/GPJ.2013.20159
57.
Youngs
,
D. L.
,
1982
, “
Time-Dependent Multi-Material Flow With Large Fluid Distortion
,”
Numer. Methods Fluid Dyn.
,
24
, pp.
273
285
.https://www.researchgate.net/publication/249970655_Time-Dependent_Multimaterial_Flow_with_Large_Fluid_Distortion
58.
Da Silva
,
M. J.
,
Thiele
,
S.
,
Abdulkareem
,
L.
,
Azzopardi
,
B. J.
, and
Hampel
,
U.
,
2010
, “
High-Resolution Gas-Oil Two-Phase Flow Visualization With a Capacitance Wire-Mesh Sensor
,”
Flow Meas. Instrum.
,
21
(
3
), pp.
191
197
.10.1016/j.flowmeasinst.2009.12.003
59.
Descamps
,
M. N.
,
Oliemans
,
R. V. A.
,
Ooms
,
G.
, and
Mudde
,
R. F.
,
2007
, “
Experimental Investigation of Three-Phase Flow in a Vertical Pipe: Local Characteristics of the Gas Phase for Gas-Lift Conditions
,”
Int. J. Multiphase Flow
,
33
(
11
), pp.
1205
1221
.10.1016/j.ijmultiphaseflow.2007.06.001
60.
Liang
,
Z.
,
Guo
,
C.
, and
Wang
,
C.
,
2022
, “
The Connection Between Flow Pattern Evolution and Vibration in 90-Degree Pipeline: Bidirectional Fluid-Structure Interaction
,”
Energy Sci. Eng.
,
10
(
2
), pp.
308
323
.10.1002/ese3.1031
61.
Abdulkadir
,
M.
,
Ugwoke
,
B.
,
Abdulkareem
,
L. A.
,
Zhao
,
D.
, and
Hernandez-Perez
,
V.
,
2021
, “
Experimental Investigation of the Characteristics of the Transition From Spherical Cap Bubble to Slug Flow in a Vertical Pipe
,”
Exp. Therm. Fluid Sci.
,
124
, p.
110349
.10.1016/j.expthermflusci.2021.110349
62.
Costigan
,
G.
, and
Whalley
,
P. B.
,
1997
, “
Slug Flow Regime Identification From Dynamic Void Fraction Measurements in Vertical Air-Water Flows
,”
Int. J. Multiphase Flow
,
23
(
2
), pp.
263
282
.10.1016/S0301-9322(96)00050-X
63.
Abdulkadir
,
M.
,
Hernandez-Perez
,
V.
,
Lowndes
,
I. S.
,
Azzopardi
,
B. J.
, and
Dzomeku
,
S.
,
2014
, “
Experimental Study of the Hydrodynamic Behavior of Slug Flow in a Vertical Riser
,”
Chem. Eng. Sci.
,
106
, pp.
60
75
.10.1016/j.ces.2013.11.021
You do not currently have access to this content.