Abstract

Floating offshore wind energy will play a key role in the clean energy transition. The number of large-scale wind farm projects is growing in regions like Northern Europe, the East Coast of the U.S., and the Mediterranean Sea. Offshore wind farms face fewer layout constraints, as they can be situated in vast, open sea areas. Turbines are often arranged in simple layouts, such as grid patterns, but this can cause significant annual energy production (AEP) losses due to wake–rotor interaction. Increasing spacing can mitigate this effect, but it may not always be feasible due to marine space limitations or higher costs for cabling and maintenance. This paper introduces a multi-objective wind farm optimization framework using a non sorted genetic algorithm (NSGA II) to minimize costs and maximize AEP. The method is applied to two case studies in the Mediterranean Sea, assuming 15 MW wind turbines. Case A is located off the coast of Civitavecchia, and case B in the Gulf of Squillace. AEP evaluation is performed with the open-source library FLOw Redirection and Induction in Steady-State (floris), while optimization is done using pymoo. In case A, the layout characterized by the lowest levelized cost of energy (LCOE) features 16 turbines, achieving an AEP of 709 GWh, an LCOE of 112.06 €/MWh, and wake losses of 2.6%. Meanwhile, in case B, the layout with the lowest LCOE consists of 19 turbines, achieving an AEP of 1140 GWh, an LCOE of 80.82 €/MWh, and wake losses of 4%.

References

1.
European Commission
,
2023
, “
Delivering on the EU Offshore Renewable Energy Ambitions
,” Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, Bruxelles, Belgium, Report No. COM(2023) 668 final.
2.
European Commission
,
2020
, “
An EU Strategy to Harness the Potential of Offshore Renewable Energy for a Climate Neutral Future
,” Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, Bruxelles, Belgium, Report No. COM(2020) 741 final.
3.
Musial
,
W.
,
Spitsen
,
P.
,
Duffy
,
P.
,
Beiter
,
P.
,
Marquis
,
M.
,
Hammond
,
R.
, and
Shields
,
M.
,
2022
, “
Offshore Wind Market Report: 2022 Edition
,” National Renewable Energy Lab. (NREL), Golden, CO, Report No.
DOE/GO-102022-5765
.https://www.energy.gov/eere/wind/articles/offshore-wind-market-report-2022-edition
4.
Barthelmie
,
R. J.
,
Larsen
,
G.
,
Frandsen
,
S.
,
Folkerts
,
L.
,
Rados
,
K.
,
Pryor
,
S.
,
Lange
,
B.
, and
Schepers
,
G.
,
2006
, “
Comparison of Wake Model Simulations With Offshore Wind Turbine Wake Profiles Measured by Sodar
,”
J. Atmos. Oceanic Technol.
,
23
(
7
), pp.
888
901
.10.1175/JTECH1886.1
5.
Hou
,
P.
,
Zhu
,
J.
,
Ma
,
K.
,
Yang
,
G.
,
Hu
,
W.
, and
Chen
,
Z.
,
2019
, “
A Review of Offshore Wind Farm Layout Optimization and Electrical System Design Methods
,”
J. Mod. Power Syst. Clean Energy
,
7
(
5
), pp.
975
986
.10.1007/s40565-019-0550-5
6.
Pollini
,
N.
,
2022
, “
Topology Optimization of Wind Farm Layouts
,”
Renewable Energy
,
195
, pp.
1015
1027
.10.1016/j.renene.2022.06.019
7.
Jensen
,
N. O.
,
1983
,
A Note on Wind Generator Interaction
, Vol.
2411
,
Citeseer
, Risø National Laboratory, Roskilde, Denmark.
8.
Gebraad
,
P. M.
,
Teeuwisse
,
F. W.
,
Van Wingerden
,
J.
,
Fleming
,
P. A.
,
Ruben
,
S. D.
,
Marden
,
J. R.
, and
Pao
,
L. Y.
,
2016
, “
Wind Plant Power Optimization Through Yaw Control Using a Parametric Model for Wake Effects—A CFD Simulation Study
,”
Wind Energy
,
19
(
1
), pp.
95
114
.10.1002/we.1822
9.
Annoni
,
J.
,
Fleming
,
P.
,
Scholbrock
,
A.
,
Roadman
,
J.
,
Dana
,
S.
,
Adcock
,
C.
,
Porte-Agel
,
F.
,
Raach
,
S.
,
Haizmann
,
F.
, and
Schlipf
,
D.
,
2018
, “
Analysis of Control-Oriented Wake Modeling Tools Using Lidar Field Results
,”
Wind Energy Sci.
,
3
(
2
), pp.
819
831
.10.5194/wes-3-819-2018
10.
Bastankhah
,
M.
, and
Porté-Agel
,
F.
,
2016
, “
Experimental and Theoretical Study of Wind Turbine Wakes in Yawed Conditions
,”
J. Fluid Mech.
,
806
, pp.
506
541
.10.1017/jfm.2016.595
11.
Bay
,
C. J.
,
Fleming
,
P.
,
Doekemeijer
,
B.
,
King
,
J.
,
Churchfield
,
M.
, and
Mudafort
,
R.
,
2023
, “
Addressing Deep Array Effects and Impacts to Wake Steering With the Cumulative-Curl Wake Model
,”
Wind Energy Sci.
,
8
(
3
), pp.
401
419
.10.5194/wes-8-401-2023
12.
Tesauro
,
A.
,
Réthoré
,
P.-E.
, and
Larsen
,
G. C.
,
2012
, “
State of the Art of Wind Farm Optimization
,”
Proceedings of EWEA
, Copenhagen, Denmark, Apr. 16–19, pp.
1
11
.https://backend.orbit.dtu.dk/ws/portalfiles/portal/7990594/State_of_the_Art_of_Wind_Farm_Optimization.pdf
13.
Gebraad
,
P.
,
Thomas
,
J. J.
,
Ning
,
A.
,
Fleming
,
P.
, and
Dykes
,
K.
,
2017
, “
Maximization of the Annual Energy Production of Wind Power Plants by Optimization of Layout and Yaw-Based Wake Control
,”
Wind Energy
,
20
(
1
), pp.
97
107
.10.1002/we.1993
14.
do Couto
,
T. G.
,
Farias
,
B.
,
Diniz
,
A.
, and
de Morais
,
M. V. G.
,
2013
, “
Optimization of Wind Farm Layout Using Genetic Algorithm
,”
Tenth World Congress on Structural and Multidisciplinary Optimization
, Orlando, FL, May 19–24, pp.
1
10
.
15.
Grady
,
S.
,
Hussaini
,
M.
, and
Abdullah
,
M. M.
,
2005
, “
Placement of Wind Turbines Using Genetic Algorithms
,”
Renewable Energy
,
30
(
2
), pp.
259
270
.10.1016/j.renene.2004.05.007
16.
González
,
J. S.
,
Rodríguez
,
A. G.
,
Mora
,
J. C.
,
Santos
,
J. R.
, and
Payán
,
M. B.
,
2009
, “
A New Tool for Wind Farm Optimal Design
,”
IEEE Bucharest PowerTech
, Bucharest, Romania,
June 28–July 2
, pp.
1
7
.10.1109/PTC.2009.5281977
17.
Mosetti
,
G.
,
Poloni
,
C.
, and
Diviacco
,
B.
,
1994
, “
Optimization of Wind Turbine Positioning in Large Windfarms by Means of a Genetic Algorithm
,”
J. Wind Eng. Ind. Aerodyn.
,
51
(
1
), pp.
105
116
.10.1016/0167-6105(94)90080-9
18.
Rodrigues
,
S.
,
Bauer
,
P.
, and
Bosman
,
P. A.
,
2016
, “
Multi-Objective Optimization of Wind Farm Layouts—Complexity, Constraint Handling and Scalability
,”
Renewable Sustainable Energy Rev.
,
65
, pp.
587
609
.10.1016/j.rser.2016.07.021
19.
Chen
,
Y.
,
Li
,
H.
,
He
,
B.
,
Wang
,
P.
, and
Jin
,
K.
,
2015
, “
Multi-Objective Genetic Algorithm Based Innovative Wind Farm Layout Optimization Method
,”
Energy Convers. Manage.
,
105
, pp.
1318
1327
.10.1016/j.enconman.2015.09.011
20.
Li
,
W.
,
Özcan
,
E.
, and
John
,
R.
,
2017
, “
Multi-Objective Evolutionary Algorithms and Hyper-Heuristics for Wind Farm Layout Optimisation
,”
Renewable Energy
,
105
, pp.
473
482
.10.1016/j.renene.2016.12.022
21.
Wan
,
C.
,
Wang
,
J.
,
Yang
,
G.
,
Gu
,
H.
, and
Zhang
,
X.
,
2012
, “
Wind Farm Micro-Siting by Gaussian Particle Swarm Optimization With Local Search Strategy
,”
Renewable Energy
,
48
, pp.
276
286
.10.1016/j.renene.2012.04.052
22.
Fischetti
,
M.
, and
Monaci
,
M.
,
2016
, “
Proximity Search Heuristics for Wind Farm Optimal Layout
,”
J. Heuristics
,
22
(
4
), pp.
459
474
.10.1007/s10732-015-9283-4
23.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.10.1109/4235.996017
24.
Blank
,
J.
, and
Deb
,
K.
,
2020
, “
Pymoo: Multi-Objective Optimization in Python
,”
IEEE Access
,
8
, pp.
89497
89509
.10.1109/ACCESS.2020.2990567
25.
NREL
,
2023
, “
FLORIS. Version 3.5
,” NREL, Golden, CO.
26.
Davis, N. N., Badger, J., Hahmann, A. N., Hansen, B. O., Mortensen, N. G., Kelly, M., et al., 2023, “The Global Wind Atlas: A High-Resolution Dataset of Climatologies and Associated Web-Based Application,”
Bull. Am. Meteorol. Soc.
, 104(8), pp. E1507–E1525.10.1175/BAMS-D-21-0075.1
27.
Kukkonen
,
S.
, and
Lampinen
,
J.
,
2005
, “
GDE3: The Third Evolution Step of Generalized Differential Evolution
,”
IEEE Congress on Evolutionary Computation
, Edinburgh, UK,
Sept. 2–5
, pp.
443
450
.10.1109/CEC.2005.1554717
28.
Deb
,
K.
,
Sindhya
,
K.
, and
Okabe
,
T.
,
2007
, “
Self-Adaptive Simulated Binary Crossover for Real-Parameter Optimization
,”
Proceedings of the Ninth Annual Conference on Genetic and Evolutionary Computation
, London, UK, July 7–11, pp.
1187
1194
.10.1145/1276958.1277190
29.
Fonseca
,
C. M.
,
Paquete
,
L.
, and
López-Ibánez
,
M.
,
2006
, “
An Improved Dimension-Sweep Algorithm for the Hypervolume Indicator
,”
IEEE International Conference on Evolutionary Computation
, Vancouver, BC, Canada,
July 16–21
, pp.
1157
1163
.10.1109/CEC.2006.1688440
30.
Churchfield
,
M.
, and
Lee
,
S.
,
2012
, “
NWTC Design Codes-SOWFA
,” NREL, Golden, CO, accessed Dec. 18, 2024, https://www.nrel.gov/wind/nwtc/sowfa.html
31.
Niayifar
,
A.
, and
Porté-Agel
,
F.
,
2016
, “
Analytical Modeling of Wind Farms: A New Approach for Power Prediction
,”
Energies
,
9
(
9
), p.
741
.10.3390/en9090741
32.
Crespo
,
A.
, and
Hernández
,
J.
,
1996
, “
Turbulence Characteristics in Wind-Turbine Wakes
,”
J. Wind Eng. Ind. Aerodyn.
,
61
(
1
), pp.
71
85
.10.1016/0167-6105(95)00033-X
33.
Göçmen
,
T.
,
Van der Laan
,
P.
,
Réthoré
,
P.-E.
,
Diaz
,
A. P.
,
Larsen
,
G. C.
, and
Ott
,
S.
,
2016
, “
Wind Turbine Wake Models Developed at the Technical University of Denmark: A Review
,”
Renewable Sustainable Energy Rev.
,
60
, pp.
752
769
.10.1016/j.rser.2016.01.113
34.
Katic
,
I.
,
Højstrup
,
J.
, and
Jensen
,
N. O.
,
1986
, “
A Simple Model for Cluster Efficiency
,”
European Wind Energy Association Conference and Exhibition
,
Rome, Italy
, Oct. 7–9, pp.
407
410
.https://backend.orbit.dtu.dk/ws/portalfiles/portal/106427419/A_Simple_Model_for_Cluster_Efficiency_EWEC_86_.pdf
35.
Habenicht
,
G.
,
2011
, “
Offshore Wake Modelling
,”
Presentation at Renewable UK Offshore Wind
Conference and Wxhibition, Liverpool, UK, June 29–30, pp.
1
8
.
36.
Ti
,
Z.
,
Deng
,
X. W.
, and
Zhang
,
M.
,
2021
, “
Artificial Neural Networks Based Wake Model for Power Prediction of Wind Farm
,”
Renewable Energy
,
172
, pp.
618
631
.10.1016/j.renene.2021.03.030
37.
Yang
,
K.
,
Deng
,
X.
,
Ti
,
Z.
,
Yang
,
S.
,
Huang
,
S.
, and
Wang
,
Y.
,
2023
, “
A Data-Driven Layout Optimization Framework of Large-Scale Wind Farms Based on Machine Learning
,”
Renewable Energy
,
218
, p.
119240
.10.1016/j.renene.2023.119240
38.
Martinez
,
A.
, and
Iglesias
,
G.
,
2022
, “
Mapping of the Levelised Cost of Energy for Floating Offshore Wind in the European Atlantic
,”
Renewable Sustainable Energy Rev.
,
154
, p.
111889
.10.1016/j.rser.2021.111889
39.
Cavazzi
,
S.
, and
Dutton
,
A.
,
2016
, “
An Offshore Wind Energy Geographic Information System (OWE-GIS) for Assessment of the UK's Offshore Wind Energy Potential
,”
Renewable Energy
,
87
, pp.
212
228
.10.1016/j.renene.2015.09.021
40.
Ministero dell'ambiente e della sicurezza energetica, 2024, “Definizione contenuti SIA,” Ministero dell'ambiente e della sicurezza energetica, Rome, Italy, accessed Dec. 18, 2024, https://va.mite.gov.it/it-it/procedure/viaelenco/1/9
41.
Myhr
,
A.
,
Bjerkseter
,
C.
,
Ågotnes
,
A.
, and
Nygaard
,
T. A.
,
2014
, “
Levelised Cost of Energy for Offshore Floating Wind Turbines in a Life Cycle Perspective
,”
Renewable Energy
,
66
, pp.
714
728
.10.1016/j.renene.2014.01.017
42.
Emeis
,
S.
,
2014
, “
Current Issues in Wind Energy Meteorology
,”
Meteorol. Appl.
,
21
(
4
), pp.
803
819
.10.1002/met.1472
43.
Berge
,
E.
,
Byrkjedal
,
O.
,
Ydersbond
,
Y.
,
Kindler
,
D.
, and
Kjeller Vindteknikk
,
A.
,
2009
, “
Modelling of Offshore Wind Resources. Comparison of a Meso-Scale Model and Measurements From FINO 1 and North Sea Oil Rigs
,”
EWEC 2009
, Marseille, France, Mar. 16–19, pp.
1
8
.https://www.enecafe.com/interdomain/idlidar/paper/2009/offshore%20mesosclale%20EWEC2009.pdf
44.
Gaertner
,
E.
,
Rinker
,
J.
,
Sethuraman
,
L.
,
Zahle
,
F.
,
Anderson
,
B.
,
Barter
,
G. E.
,
Abbas
,
N. J.
, et al.,
2020
, “
IEA Wind TCP Task 37: Definition of the IEA 15-Megawatt Offshore Reference Wind Turbine
,” National Renewable Energy Lab. (NREL), Golden, CO, Report No.
NREL/TP-5000-75698
.https://www.nrel.gov/docs/fy20osti/75698.pdf
You do not currently have access to this content.