A comprehensive fracture-mechanics-based life prediction methodology is presented for fcc single crystal components based on the computation of stress intensity factors (SIFs), and the modeling of the crystallographic fatigue crack growth (FCG) process under mixed-mode loading conditions. The 3D finite element numerical procedure presented for computing SIFs for anisotropic materials under mixed-mode loading is very general and not just specific to fcc single crystals. SIFs for a Brazilian disk specimen are presented for the crack on the {111}) plane in the ⟨101⟩ and ⟨121⟩ directions, which represent the primary and secondary slip directions. Variation of SIFs as a function of thickness is also presented. Modeling of the crystallographic FCG behavior is performed by using the resolved shear stress intensity coefficient, Krss. This parameter is sensitive to the grain orientation and is based on the resolved shear stresses on the slip planes at the crack tip, which is useful in identifying the active crack plane as well as in predicting the crack growth direction. A multiaxial fatigue crack driving force parameter, ΔKrss, was quantified, which can be used to predict the FCG rate and, hence, life in single crystal components subject to mixed-mode fatigue loading.

1.
Cowles
,
B. A.
, 1996, “
High Cycle Fatigue Failure in Aircraft Gas Turbines: An Industry Perspective
,”
Int. J. Fract.
0376-9429,
80
, pp.
147
163
.
2.
Moroso
,
J.
, 1999, “
Effect of Secondary Crystal Orientation on Fatigue Crack Growth in Single Crystal Nickel Turbine Blade Superalloys
,” MS thesis, University of Florida, Gainesville, FL.
3.
Deluca
,
D. P.
, and
Annis
,
C.
, 1995, “
Fatigue in Single Crystal Nickel Superalloys
,” Office of Naval Research, Department of the Navy, Technical Report No. FR23800.
4.
Swanson
,
G. R.
, and
Arakere
,
N. K.
, 2000, “
Effect of Crystal Orientation on Analysis of Single-Crystal, Nickel-Based Turbine Blade Superalloys
,” NASA, Marshall Space Flight Center, Technical Publication No. NASA/TP-2000-210074.
5.
Telesman
,
J.
,
Fisher
,
D. N.
, and
Holka
,
D.
, 1986, “
Variables Controlling Fatigue Crack Growth of Short Crack
,”
Proceedings of the International Conference on Fatigue Corrosion Cracking Fracture Mechanics and Failure Analysis
, pp.
53
69
.
6.
Ranjan
,
S.
, 2005, “
Development of a Numerical Procedure for Mixed Mode K-Solutions and Fatigue Crack Growth in FCC Single Crystal Superalloys
,” Ph.D. thesis, University of Florida.
7.
Telesman
,
J.
, and
Ghosn
,
L.
, 1989, “
The Unusual Near-Threshold FCG Behavior of a Single Crystal Superalloy and the Resolved Shear Stress as the Crack Driving Force
,”
Eng. Fract. Mech.
0013-7944,
34
(
5/6
), pp.
1183
1196
.
8.
Siddiqui
,
S.
, 2003, “
Finite Element Analysis of Slip Systems in Single Crystal Superalloy Notched Specimens
,” MS thesis, University of Florida.
9.
Naik
,
R. A.
,
Deluca
,
D. P.
, and
Shah
,
D. M.
, 2004, “
Critical Plane Fatigue Modeling and Characterization of Single Crystal Nickel Superalloys
,”
Trans. ASME: J. Eng. Gas Turbines Power
0742-4795,
126
, pp.
391
400
.
10.
Rice
,
J. R.
, 1968, “
A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks
,”
ASME J. Appl. Mech.
0021-8936,
35
, pp.
379
386
.
11.
Sosa
,
H. A.
, and
Eischen
,
J. W.
, 1986, “
Computation of Stress Intensity Factors for Plate Bending Via a Path-Independent Integral
,”
Eng. Fract. Mech.
0013-7944,
25
(
4
), pp.
451
462
.
12.
Parks
,
D. M.
, 1974, “
A Stiffness Derivative Finite Element Technique for the Determination of Crack Tip Stress Intensity Factors
,”
Int. J. Fract.
0376-9429,
10
(
4
), pp.
487
502
.
13.
Ishikava
,
H.
, 1980, “
A Finite Element Analysis of Stress Intensity Factors for Combined Tensile and Shear Loading by Only a Virtual Crack Extension
,”
Int. J. Fract.
0376-9429,
16
, pp.
243
246
.
14.
Raju
,
I. S.
, 1987, “
Calculation of Strain-Energy Release Rates With Higher Order and Singular Finite Elements
,”
Eng. Fract. Mech.
0013-7944,
28
(
3
), pp.
251
274
.
15.
Atkinson
,
C.
,
Smelser
,
R. E.
, and
Sanchez
,
J.
, 1982, “
Combined Mode Fracture Via the Cracked Brazilian Disk Test
,”
Int. J. Fract.
0376-9429,
18
(
4
), pp.
279
291
.
16.
Shih
,
C. F.
,
DeLorenzi
,
H. G.
, and
German
,
M. D.
, 1976, “
Crack Extension Modeling With Singular Quadratic Isoparametric Elements
,”
Int. J. Fract.
0376-9429,
12
(
3
), pp.
647
650
.
17.
Awaji
,
H.
, and
Sato
,
S.
, 1978, “
Combined Mode Fracture Toughness Measurement by the Disk Test
,”
ASME J. Eng. Mater. Technol.
0094-4289,
100
, pp.
175
182
.
18.
Su
,
R. K. L.
, and
Sun
,
H. Y.
, 2003, “
Numerical Solutions of Two-Dimensional Anisotropic Crack Problems
,”
Int. J. Solids Struct.
0020-7683,
40
, p.
4615
4635
.
19.
Hwu
,
C.
, and
Liang
,
Y.
, 2000, “
Evaluation of Stress Concentration Factors and Stress Intensity Factors From Remote Boundary Data
,”
Int. J. Solids Struct.
0020-7683,
37
, pp.
5957
5972
.
20.
Heppler
,
G.
, and
Hansen
,
J. S.
, 1981, “
Mixed Mode Fracture Analysis of Rectilinear Anisotropic Plates by High Order Finite Elements
,”
Int. J. Numer. Methods Eng.
0029-5981,
17
, pp.
445
464
.
21.
Denda
,
M.
, and
Marante
,
M. E.
, 2004, “
Mixed Mode BEM Analysis of Multiple Curvilinear Cracks in the General Anisotropic Solids by the Crack Tip Singular Element
,”
Int. J. Solids Struct.
0020-7683,
41
, pp.
1473
1489
.
22.
Mews
,
H.
, and
Kuhn
,
G.
, 1988, “
An Effective Numerical Stress Intensity Factor Calculation With No Crack Discretization
,”
Int. J. Fract.
0376-9429,
38
, pp.
61
76
.
23.
Huang
,
H.
, and
Kardomateas
,
G. A.
, 2001, “
Stress Intensity Factors for a Mixed Mode Center Crack in an Anisotropic Strip
,”
Int. J. Fract.
0376-9429,
108
, pp.
367
381
.
24.
Sun
,
Y.-Z.
,
Yang
,
S.-S.
, and
Wang
,
Y.-B.
, 2003, “
A New Formulation of Boundary Element Method for Cracked Anisotropic Bodies Under Anti-Plane Shear
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
192
, pp.
2633
2648
.
25.
Tweed
,
J.
,
Melrose
,
G.
, and
Kerr
,
G.
, 2000, “
Stress Intensification Due to an Edge Crack in an Anisotropic Elastic Solid
,”
Int. J. Fract.
0376-9429,
106
, pp.
47
56
.
26.
Pan
,
E.
, and
Yuan
,
F. G.
, 2000, “
Boundary Element Analysis of Three-Dimensional Cracks in Anisotropic Solids
,”
Int. J. Numer. Methods Eng.
0029-5981,
48
, pp.
211
237
.
27.
Denda
,
M.
, 2001, “
Mixed Mode I, II and III Analysis of Multiple Cracks in Plane Anisotropic Solids by the BEM: A Dislocation and Point Force Approach
,”
Eng. Anal. Boundary Elem.
0955-7997,
25
, pp.
267
278
.
28.
Sih
,
G. C.
,
Paris
,
P. C.
, and
Irwin
,
G. R.
, 1965, “
On Cracks in Rectilinearly Anisotropic Bodies
,”
Int. J. Fract. Mech.
0020-7268,
1
, pp.
189
203
.
29.
Ingraffea
,
A.
, and
Manu
,
C.
, 1980, “
Stress-Intensity Factor Computation in Three Dimensions With Quarter-Point Elements
,”
Int. J. Numer. Methods Eng.
0029-5981,
15
, pp.
1427
1445
.
30.
Lekhnitskii
,
S. G.
, 1963,
Theory of Elasticity of an Anisotropic Elastic Body
,
Holden-Day
,
San Francisco
.
31.
Saouma
,
V. E.
, and
Sikiotis
,
E. S.
, 1986, “
Stress Intensity Factors in Anisotropic Bodies Using Singular Isoparametric Elements
,”
Eng. Fract. Mech.
0013-7944,
25
(
1
), pp.
115
121
.
32.
Deluca
,
D. P.
, private communication.
33.
Gell
,
M.
, and
Liverant
,
G. R.
, 1968, “
The Characteristics of Stage I Fatigue Fracture in a High Strength Nickel Alloy
,”
Acta Metall.
0001-6160,
16
(
4
), pp.
553
561
.
34.
Gell
,
M.
, and
Liverant
,
G. R.
, 1968, “
The Fatigue of the Nickel-Base Superalloy, MAR-M200, in Single Crystal and Columnar-Grained Forms at Room Temperature
,”
Trans. Metall. Soc. AIME
0543-5722,
242
, pp.
1869
1879
.
35.
Duquette
,
D. J.
,
Gell
,
M.
, and
Piteo
,
J. W.
, 1970, “
A Fractographic Study of Stage I Fatigue Cracking in a Nickel-Base Superalloy Single Crystal
,”
Metall. Trans.
0026-086X,
1
, pp.
3107
3115
.
36.
Chen
,
O. Y.
, 1985, “
Crystallographic Fatigue Crack Propagation in Single Crystal Nickel-Base Superalloy
,” Ph.D. thesis, University of Connecticut.
37.
Chan
,
K. S.
,
Hack
,
J. E.
, and
Liverant
,
G. R.
, 1987, “
Fatigue Crack Growth in MAR-M200 Single Crystals
,”
Metall. Trans. A
0360-2133,
18A
, pp.
581
591
.
38.
Nageswararao
,
M.
, and
Gerold
,
V.
, 1976, “
Fatigue Crack Propagation in Stage I in an Aluminum-Zinc-Magnesium Alloy: General Characteristics
,”
Metall. Trans. A
0360-2133,
7A
, pp.
1847
1855
.
39.
McEvily
,
A. J.
, and
Boettner
,
R. G.
, 1963, “
On Fatigue Crack Propagation in F.C.C. Metals
,”
Acta Metall.
0001-6160,
11
(
7
), pp.
725
743
.
40.
Chen
,
Q.
, and
Liu
,
H. W.
, 1988, “
Resolved Shear Stress Intensity Coefficient and Fatigue Crack Growth in Large Crystals
,” NASA, Syracuse University, Contractor Report No. CR-182137.
41.
Peach
,
M.
, and
Koehler
,
J. S.
, 1950, “
The Forces Exerted on Dislocations and the Stress Fields Produced by Them
,”
Phys. Rev.
0031-899X,
80
(
3
), pp.
436
439
.
42.
Tada
,
H.
,
Paris
,
P. C.
, and
Irwin
,
G. R.
, 1985,
The Stress Analysis of Cracks Handbook
,
Paris Productions
,
St. Louis
.
43.
John
,
R.
,
Deluca
,
D. P.
,
Nicholas
,
T.
, and
Porter
,
J.
, 1999, “
Near Threshold Crack Growth Behavior of a Single Crystal Ni-Base Superalloy Subjected to Mixed Mode Loading
,”
Mixed-Mode Crack Behavior
,
American Society for Testing Materials
,
Philadelphia
, pp.
312
328
.
44.
Suresh
,
S.
, 1998,
Fatigue of Materials
, 2nd ed.,
Cambridge University Press
,
Cambridge, England
.
You do not currently have access to this content.