Transverse dilution jets are widely used in combustion systems. The current research provides a detailed study of the primary jets of a realistic annular combustion chamber sector. The combustor sector comprises an aerodynamic diffuser, inlet cowl, combustion dome, primary dilution jets, secondary dilution jets, and cooling strips to provide convective cooling to the liner. The chamber contracts toward the end to fit the turbine nozzle ring. 2D PIV is employed at an atmospheric pressure drop of 4% (isothermal) to delineate the flow field characteristics. The laser is introduced to the sector through the exit flange. The interaction between the primary jets and the swirling flow as well as the sensitivity of the primary jets to perturbations is discussed. The perturbation study includes: effect of partially blocking the jets, one at a time, the effect of blocking the convective cooling holes, placed underneath the primary jets and shooting perpendicular to it. In addition, the effect of reducing the size of the primary jets as well as off-centering the primary jets is explained. Moreover, PIV is employed to study the flow field with and without fuel injection at four different fuel flow rates. The results show that the flow field is very sensitive to perturbations. The cooling air interacts with the primary jet and influences the flow field although the momentum ratio has a 100:1 order of magnitude. The results also show that the big primary jets dictate the flow field in the primary zone as well as the secondary zone. However, relatively smaller jets mainly influence the primary combustion zone because most of the jet is recirculated back to the CRZ. Also, the jet penetration is reduced with 25% and 11.5% corresponding to a 77% and 62% reduction of the jet’s area, respectively. The study indicates the presence of a critical jet diameter beyond which the dilution jets have minimum impact on the secondary region. The jet off-centering shows significant effect on the flow field though it is in the order of 0.4 mm. The fuel injection is also shown to influence the flow field as well as the primary jets angle. High fuel flow rate is shown to have very strong impact on the flow field and thus results in a strong distortion of both the primary and secondary zones. The results provide useful methods to be used in the flow field structure control. Most of the effects shown are attributed to the difference in jet opposition. Hence, the results are applicable to reacting flow.
Skip Nav Destination
Article navigation
January 2011
Research Papers
Influence of the Primary Jets and Fuel Injection on the Aerodynamics of a Prototype Annular Gas Turbine Combustor Sector
Bassam Mohammad,
Bassam Mohammad
Department of Aerospace Engineering,
University of Cincinnati
, Cincinnati, OH 45221
Search for other works by this author on:
San-Mou Jeng,
San-Mou Jeng
Department of Aerospace Engineering,
University of Cincinnati
, Cincinnati, OH 45221
Search for other works by this author on:
M. Gurhan Andac
M. Gurhan Andac
General Electric Aviation
, Evendale, OH 45215
Search for other works by this author on:
Bassam Mohammad
Department of Aerospace Engineering,
University of Cincinnati
, Cincinnati, OH 45221
San-Mou Jeng
Department of Aerospace Engineering,
University of Cincinnati
, Cincinnati, OH 45221
M. Gurhan Andac
General Electric Aviation
, Evendale, OH 45215J. Eng. Gas Turbines Power. Jan 2011, 133(1): 011505 (8 pages)
Published Online: September 24, 2010
Article history
Received:
April 7, 2010
Revised:
April 8, 2010
Online:
September 24, 2010
Published:
September 24, 2010
Citation
Mohammad, B., Jeng, S., and Andac, M. G. (September 24, 2010). "Influence of the Primary Jets and Fuel Injection on the Aerodynamics of a Prototype Annular Gas Turbine Combustor Sector." ASME. J. Eng. Gas Turbines Power. January 2011; 133(1): 011505. https://doi.org/10.1115/1.4002004
Download citation file:
Get Email Alerts
On Leakage Flows In A Liquid Hydrogen Multi-Stage Pump for Aircraft Engine Applications
J. Eng. Gas Turbines Power
A Computational Study of Temperature Driven Low Engine Order Forced Response In High Pressure Turbines
J. Eng. Gas Turbines Power
The Role of the Working Fluid and Non-Ideal Thermodynamic Effects on Performance of Gas Lubricated Bearings
J. Eng. Gas Turbines Power
Tool wear prediction in broaching based on tool geometry
J. Eng. Gas Turbines Power
Related Articles
Jet Impingement Cooling of Chips Equipped With Multiple Cylindrical Pedestal Fins
J. Electron. Packag (September,2007)
Fan-Shaped Hole Effects on the Aero-Thermal Performance of a Film-Cooled Endwall
J. Turbomach (January,2006)
Impingement Heat Transfer: Correlations and Numerical Modeling
J. Heat Transfer (May,2005)
Related Proceedings Papers
Related Chapters
Introduction
Consensus on Operating Practices for Control of Water and Steam Chemistry in Combined Cycle and Cogeneration
A Simple Carburetor
Case Studies in Fluid Mechanics with Sensitivities to Governing Variables
Adding Surface While Minimizing Downtime
Heat Exchanger Engineering Techniques