Successful, efficient turbine design requires a thorough understanding of the underlying physical phenomena. This paper investigates the flutter phenomenon of low pressure turbine (LPT) blades seen in aircraft engines and power turbines. Computational fluid dynamics (CFD) analysis will be conducted in a two-dimensional (2D) sense using a frequency domain Reynolds-averaged Navier—Stokes (RANS) solver on a publicly available LPT airfoil geometry: École Polytechnique Fédérale De Lausanne (EPFL's) Standard Configuration 4. An emphasis is placed on revealing the underlying physics behind the threatening LPT flutter mechanism. To this end, flutter sensitivity analysis is conducted on three key parameters: reduced frequency, mode shape, and Mach number. Additionally, exact 2D acoustic resonance interblade phase angles (IBPAs) are analytically predicted as a function of reduced frequency. Made evident via damping versus IBPA plots, the CFD model successfully captures the theoretical acoustic resonance predictions. Studies of the decay of unsteady aerodynamic influence coefficients away from a reference blade are also presented. The influence coefficients provide key insights to the harmonic content of the unsteady pressure field. Finally, this work explores methods of normalizing the work per cycle by the exit dynamic pressure.

References

1.
Panovsky
,
J.
, and
Kielb
,
R. E.
,
2000
, “
A Design Method to Prevent Low Pressure Turbine Blade Flutter
,”
ASME J. Eng. Gas Turbines Power
,
122
(1)
, pp.
89
98
.10.1115/1.483180
2.
Vogt
,
D.
,
2005
, “
Experimental Investigation of Three-Dimensional Mechanisms in Low-Pressure Turbine Flutter
,” Ph.D. thesis, KTH Royal Institute of Technology, Stockholm, Sweden.
3.
Bendiksen
,
O.
, and
Friedmann
,
P.
,
1980
, “
Coupled Bending-Torsion Flutter in Cascades
,”
AIAA J.
,
18
(2)
, pp.
194
201
.10.2514/3.50748
4.
Nowinski
,
M.
, and
Panovsky
,
J.
,
2000
, “
Flutter Mechanisms in Low Pressure Turbine Blades
,”
ASME J. Eng. Gas Turbines Power
,
122
(1)
, pp.
82
88
.10.1115/1.483179
5.
Kielb
,
R. E.
,
2001
, “
CFD for Turbomachinery Unsteady Flows—An Aeroelastic Design Perspective
,”
AIAA
Paper No. 2001-0429.10.2514/62001-0429
6.
Bölcs
,
A.
, and
Fransson
,
T. H.
,
1986
, “
Aeroelasticity in Turbomachines Comparison of Theoretical and Experimental Cascade Results
,” Communication du Laboratoire de Thermique Appliquée et de Turbomachines, Lausanne, Switzerland, June 30, EPFL No. 13.
7.
Meingast
,
M.
,
Kielb
,
R. E.
, and
Thomas
,
J. P.
,
2009
, “
Preliminary Flutter Design Method for Supersonic Low Pressure Turbines
,”
ASME
Paper No. GT2009-59177.10.1115/GT2009-59177
8.
Vega
,
A.
, and
Corral
,
R.
,
2013
, “
Physics of Vibrating Airfoils at Low Reduced Frequency
,”
ASME
Paper No. GT2013-94906.10.1115/GT2013-94906
9.
Fransson
,
T. H.
, and
Verdon
,
J. M.
,
1991
, “
Updated Report on Standard Configurations for Unsteady Flow Through Vibrating Axial-Flow Turbomachine Cascades
,” KTH Royal Institute of Technology, Stockholm, Sweden, Technical Report.
10.
Ekici
,
K.
,
Kielb
,
R. E.
, and
Hall
,
K. C.
,
2010
, “
Forced Response and Analysis of Aerodynamically Asymmetric Cascades
,”
AIAA
Paper No. 2010-6535.10.2514/62010-6535
11.
Hall
,
K. C.
,
Thomas
,
J. P.
, and
Clark
,
W. S.
,
2002
, “
Computation of Unsteady Nonlinear Flows in Cascades Using a Harmonic Balance Technique
,”
AIAA J.
,
40
(
5
), pp.
879
886
.10.2514/3.15137
12.
Witteck
,
D.
,
Micallef
,
D.
,
Wiedermann
,
A.
, and
Mailach
,
R.
,
2012
, “
Three-Dimensional Viscous Flutter Analysis of a Turbine Cascade in Supersonic Flow
,” 13th International Symposium on Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines (
ISUAAAT13
), Tokyo, Japan, September 11-14, Paper No. 13-S9-2.
13.
Golubev
,
V. V.
, and
Atassi
,
H. M.
,
1996
, “
Sound Propagation in an Annular Duct With Mean Potential Swirling Flow
,”
J. Sound Vib.
,
195
(
5
), pp.
601
616
.10.1006/jsvi.1996.0591
14.
Vahdati
,
M.
, and
Cumpsty
,
N. A.
,
2012
, “
The Mechanism of Aeroelastic Instability in Transonic Fans
,” 13th International Symposium on Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines (ISUAAAT13), Tokyo, Japan, September 11–14, Paper No. 13-I-5.
15.
Kielb
,
R. E.
, and
Kaza
,
K. R. V.
,
1983
, “
Aeroelastic Characteristics of a Cascade of Mistuned Blades in Subsonic and Supersonic Flows
,”
ASME J. Vib. Acoust.
,
105
(
4
), pp.
425
433
.10.1115/1.3269124
16.
Whitehead
,
D. S.
,
1966
, “
Effect of Mistuning on the Vibration of Turbomachine Blades Induced by Wakes
,”
J. Mech. Eng. Sci.
,
8
(1)
, pp.
15
21
.10.1243/JMES_JOUR_1966_008_004_02
17.
Kielb
,
R. E.
,
Hall
,
K. C.
, and
Miyakozawa
,
T.
,
2007
, “
The Effect of Unsteady Aerodynamic Asymmetric Perturbations on Flutter
,”
ASME
Paper No. GT2013-94906.10.1115/GT2013-94906
You do not currently have access to this content.