An anode gas recycle (AGR) system using an ejector for 1 kW solid oxide fuel cells (SOFCs) was developed to increase the electrical efficiency of combined power generation. We call this an AGR–SOFC. The effects of recirculation ratio, externally steam feed rate, and fuel utilization were determined experimentally on the AGR–SOFC performance (i.e., output power, stack temperature, and gas composition) using a variable flow ejector and a recirculation ratio of 0.55–0.62, overall fuel utilization of 0.720–84, and steam feed rate of 0–1.5 g/min. A quadrupole mass spectrometer was used to identify the recirculation ratio, the gas composition of reformed gas at the AGR–SOFC inlet, and that of the recycle gas at the outlet. Compared to one-path SOFC systems, i.e., without an AGR, the AGR–SOFC was stable and generated about 15 W more electricity when the overall fuel utilization was 0.84 and the recirculation ratio was 0.622 with no steam supply. This improved performance was due to the reduced H2O concentration in the anodic gas. In addition, although the recirculation ratio did not affect the AGR–SOFC performance, a high recirculation ratio can provide steam produced via the electrochemical reaction to the injected fuel for the steam reforming process.

References

1.
Takahashi
,
S.
,
Kobayashi
,
N.
,
Iki
,
N.
,
Furutani
,
H.
, and
Yamashita
,
I.
,
2004
, “
Feasibility Study on SOFC-Stirling Engine Combined System
,”
Trans. Jpn. Soc. Mech. Eng. Ser. B
,
70
(
689
), pp.
192
200
.10.1299/kikaib.70.192
2.
Ray
,
E. R.
, and
Veyo
,
S. E.
,
1993
, “
High Temperature Solid Oxide Fuel Cell—Customer Test Units
,”
Joint Contractors Meeting FE/EE Advanced Turbine System Conference: FE Fuel Cell and Coal Fired Heat Engine Conference
, Morgantown, WV, Aug. 3–5, pp.
304
312
.
3.
Marsano
,
F.
,
Magistri
,
L.
, and
Massardo
,
A. F.
,
2004
, “
Ejector Performance Influence on a Solid Oxide Fuel Cell Anodic Recirculation System
,”
J. Power Sources
,
129
(
2
), pp.
216
228
.10.1016/j.jpowsour.2003.11.034
4.
Ferrari
,
M. L.
, and
Massardo
,
A. F.
,
2013
, “
Cathode–Anode Side Interaction in SOFC Hybrid Systems
,”
Appl. Energy
,
105
, pp.
369
379
.10.1016/j.apenergy.2013.01.029
5.
Ferrari
,
M. L.
,
Pascenti
,
M.
,
Magistri
,
L.
, and
Massardo
,
A. F.
,
2010
, “
Hybrid System Test Rig: Startup and Shutdown Physical Emulation
,”
ASME J. Fuel Cell Sci. Technol.
,
7
(
2
), p.
021005
.10.1115/1.3176663
6.
Traverso
,
A.
,
Trasino
,
F.
,
Magistri
,
L.
, and
Massardo
,
A. F.
,
2008
, “
Time Characterization of the Anodic Loop of a Pressurized Solid Oxide Fuel Cell System
,”
ASME J. Eng. Gas Turbines Power
,
130
(
2
), p.
021702
.10.1115/1.2772638
7.
Ferrari
,
M. L.
,
2011
, “
Solid Oxide Fuel Cell Hybrid System: Control Strategy for Stand-Alone Configurations
,”
J. Power Sources
,
196
(
5
), pp.
2682
2690
.10.1016/j.jpowsour.2010.11.029
8.
Zhu
,
Y.
,
Cai
,
W.
,
Wen
,
C.
, and
Li
,
Y.
,
2007
, “
Fuel Ejector Design and Simulation Model for Anodic Recirculation SOFC System
,”
J. Power Sources
,
173
(
1
), pp.
437
449
.10.1016/j.jpowsour.2007.08.036
9.
Zhu
,
Y.
,
Cai
,
W.
,
Li
,
Y.
, and
Wen
,
C.
,
2008
, “
Anode Gas Recirculation Behavior of a Fuel Ejector in Hybrid Solid Oxide Fuel Cell Systems: Performance Evaluation in Three Operational Modes
,”
J. Power Sources
,
185
(
2
), pp.
1122
1130
.10.1016/j.jpowsour.2008.07.027
10.
Zhu
,
Y.
,
Li
,
Y.
, and
Cai
,
W.
,
2011
, “
Control Oriented Modeling of Ejector in Anode Gas Recirculation Solid Oxygen Fuel Cell Systems
,”
Energy Convers. Manage.
,
52
(
4
), pp.
1881
1889
.10.1016/j.enconman.2010.11.012
11.
Zhu
,
Y.
,
Cai
,
W.
,
Wen
,
C.
, and
Li
,
Y.
,
2009
, “
Numerical Investigation of Geometry Parameters for Design of High Performance Ejectors
,”
Appl. Therm. Eng.
,
29
(
5–6
), pp.
898
905
.10.1016/j.applthermaleng.2008.04.025
12.
Saebea
,
D.
,
Patcharavorachot
,
Y.
, and
Arpornwichanop
,
A.
,
2012
, “
Analysis of an Ethanol-Fuelled Solid Oxide Fuel Cell System Using Partial Anode Exhaust Gas Recirculation
,”
J. Power Sources
,
208
, pp.
120
130
.10.1016/j.jpowsour.2012.02.023
13.
Liu
,
M.
,
Lanzini
,
A.
,
Halliop
,
W.
,
Cobas
,
V. R. M.
,
Verkooijen
,
A. H. M.
, and
Aravind
,
P. V.
,
2013
, “
Anode Recirculation Behavior of a Solid Oxide Fuel Cell System: A Safety Analysis and a Performance Optimization
,”
Int. J. Hydrogen Energy
,
38
(
6
), pp.
2868
2883
.10.1016/j.ijhydene.2012.12.070
14.
Santarelli
,
M. G.
,
Leone
,
P.
,
Cali
,
M.
, and
Orsello
,
G.
,
2007
, “
Experimental Analysis of the Voltage and Temperature Behavior of a Solid Oxide Fuel Cell Generator
,”
ASME J. Fuel Cell Sci. Technol.
,
4
(
2
), pp.
143
153
.10.1115/1.2713772
15.
Peters
,
R.
,
Deja
,
R.
,
Blum
,
L.
,
Pennanen
,
J.
,
Kiviaho
,
J.
, and
Hakala
,
T.
,
2013
, “
Analysis of Solid Oxide Fuel Cell System Concepts With Anode Recycling
,”
Int. J. Hydrogen Energy
,
38
(
16
), pp.
6809
6820
.10.1016/j.ijhydene.2013.03.110
16.
Braun
,
R. J.
,
Klein
,
S. A.
, and
Reindl
,
D. T.
,
2006
, “
Evaluation of System Configurations for Solid Oxide Fuel Cell-Based Micro-Combined Heat and Power Generators in Residential Applications
,”
J. Power Sources
,
158
(
2
), pp.
1290
1305
.10.1016/j.jpowsour.2005.10.064
17.
Farhad
,
S.
,
Hamdullahpur
,
F.
, and
Yoo
,
Y.
,
2010
, “
Performance Evaluation of Different Configurations of Biogas-Fuelled SOFC Micro-CHP Systems for Residential Applications
,”
Int. J. Hydrogen Energy
,
35
(
8
), pp.
3758
3768
.10.1016/j.ijhydene.2010.01.052
18.
Liso
,
V.
,
Olesen
,
A. C.
,
Nielsen
,
M. P.
, and
Kær
,
S. K.
,
2011
, “
Performance Comparison Between Partial Oxidation and Methane Steam Reforming Processes for Solid Oxide Fuel Cell (SOFC) Micro Combined Heat and Power (CHP) System
,”
Energy
,
36
(
7
), pp.
4216
4226
.10.1016/j.energy.2011.04.022
19.
Liso
,
V.
,
Nielsen
,
M. P.
, and
Kær
,
S. K.
,
2013
, “
Ejector Design and Performance Evaluation for Recirculation of Anode Gas in a Micro Combined Heat and Power Systems Based on Solid Oxide Fuel Cell
,”
Appl. Therm. Eng.
,
54
(
1
), pp.
26
34
.10.1016/j.applthermaleng.2013.01.021
20.
Dietrich
,
R. U.
,
Oelze
,
J.
,
Lindermeir
,
A.
,
Spitta
,
C.
,
Steffen
,
M.
,
Küster
,
T.
,
Chen
,
S.
,
Schlitzberger
,
C.
, and
Leithnerd
,
R.
,
2011
, “
Efficiency Gain of Solid Oxide Fuel Cell Systems by Using Anode Offgas Recycle—Results for a Small Scale Propane Driven Unit
,”
J. Power Sources
,
196
(
17
), pp.
7152
7160
.10.1016/j.jpowsour.2010.09.016
21.
Brunner
,
D. A.
,
Marcks
,
S.
,
Bajpai
,
M.
,
Prasad
,
A. K.
, and
Advani
,
S. G.
,
2012
, “
Design and Characterization of an Electronically Controlled Variable Flow Rate Ejector for Fuel Cell Applications
,”
Int. J. Hydrogen Energy
,
37
(
5
), pp.
4457
4466
.10.1016/j.ijhydene.2011.11.116
22.
Powell
,
M.
,
Meinhardt
,
K.
,
Sprenkle
,
V.
,
Chick
,
L.
, and
McVay
,
G.
,
2012
, “
Demonstration of a Highly Efficient Solid Oxide Fuel Cell Power System Using Adiabatic Steam Reforming and Anode Gas Recirculation
,”
J. Power Sources
,
205
, pp.
377
384
.10.1016/j.jpowsour.2012.01.098
You do not currently have access to this content.