Lean premixed single-stage combustion is state of the art for low pollution combustion in heavy-duty gas turbines with gaseous fuels. The application of premixed jets in multistage combustion to lower nitric oxide emissions and enhance turn-down ratio is a novel promising approach. At the Lehrstuhl für Thermodynamik, Technische Universität München, a large-scale atmospheric combustion test rig has been set up for studying staged combustion. The understanding of lift-off (LO) behavior is crucial for determining the amount of mixing before ignition and for avoiding flames anchoring at the combustor walls. This experiment studies jet LO depending on jet equivalence ratio (0.58–0.82), jet preheat temperature (288–673 K), cross flow temperature (1634–1821 K), and jet momentum ratio (6–210). The differences to existing LO studies are the high cross flow temperature and applying a premixed jet. The LO height of the jet flame is determined by OH* chemiluminescence images, and subsequently, the data is used to analyze the influence of each parameter and to develop a model that predicts the LO height for similar staged combustion systems. A main outcome of this work is that the LO height in a high temperature cross flow cannot be described by one dimensionless number like Damköhler- or Karlovitz-number. Furthermore, the ignition delay time scale τign also misses part of the LO height mechanism. The presented model uses turbulent time scales, the ignition delay, and a chemical time scale based on the laminar flame speed. An analysis of the model reveals flame stabilization mechanisms and explains the importance of different time scale.

References

1.
Barkey
,
C.
,
Richards
,
S.
,
Harrop
,
N.
,
Kotsiopriftis
,
P.
, and
Mastroberardino
,
R.
,
1999
, “
Rolls-Royce Industrial Trent: Combustion and Other Technologies
,”
International Symposium on Air-Breathing Engines
(
ISABE
),
Florence, Italy
, Paper No. IS-153.http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA373340
2.
Joos
,
F.
,
Brunner
,
P.
,
Schulte-Werning
,
B.
,
Syed
,
K.
, and
Eroglu
,
A.
,
1996
, “
Development of the Sequential Combustion System for the ABB GT24/GT26 Gas Turbine Family
,”
ASME
Paper No. 96-GT-315.
3.
Eggels
,
R.
,
2001
, “
Modeling of NOx Formation of a Premixed DLE Gas Turbine Combustor
,”
ASME
Paper No. 2001-GT-0069.
4.
Haight
,
B.
,
2014
, “
New Air-Cooled h-Class
,”
Diesel and Gas Turbine Worldwide
, Vol.
5
,
Brent Haight
,
Waukesha, WI
, pp.
30
34
.
5.
Leonard
,
G.
, and
Stegmaier
,
J.
,
1994
, “
Development of an Aeroderivative Gas Turbine Dry Low Emissions Combustion System
,”
ASME J. Gas Turbines Power
,
116
(
3
), pp.
542
546
.
6.
Hada
,
S.
,
Tsukagoshi
,
K.
,
Masada
,
J.
, and
Ito
,
E.
,
2012
, “
Test Results of the World's First 1,600∘ J-Series Gas Turbine
,”
Mitsubishi Heavy Ind. Tech. Rev.
,
49
(
1
), pp.
18
23
.https://www.mhi-global.com/company/technology/review/pdf/e491/e491018.pdf
7.
Galeazzo
,
F. C. C.
,
Donnert
,
G.
,
Habisreuther
,
P.
,
Zarzalis
,
N.
,
Valdes
,
R.
, and
Krebs
,
W.
,
2010
, “
Measurement and Simulation of Turbulent Mixing in a Jet in Crossflow
,”
ASME
Paper No. GT2010-22709.
8.
Galeazzo
,
F. C. C.
,
Kern
,
M.
,
Habisreuther
,
P.
,
Zarzalis
,
N.
, and
Beck
,
C.
,
2011
, “
Simulation of a Lifted Flame in a Vitiated Air Environment
,”
5th European Combustion Meeting
, Cardiff, UK, June 27–July 1.
9.
Galeazzo
,
F. C. C.
,
Prathap
,
C.
,
Kern
,
M.
,
Habisreuther
,
P.
, and
Zarzalis
,
N.
,
2012
, “
Investigation of a Flame Anchored in Crossflow Stream of Vitiated Air at Elevated Pressures
,”
ASME
Paper No. GT2012-69632.
10.
Galeazzo
,
F. C. C.
,
Donnert
,
G.
,
Cardenas
,
C.
,
Sedlmaier
,
J.
,
Habisreuther
,
P.
,
Zarzalis
,
N.
,
Beck
,
C.
, and
Krebs
,
W.
,
2013
, “
Computational Modeling of Turbulent Mixing in a Jet in Crossflow
,”
Int. J. Heat Fluid Flow
,
41
(
0
), pp.
55
65
.
11.
Lamont
,
W. G.
,
Roa
,
M.
,
Meyer
,
S. E.
, and
Lucht
,
R. P.
,
2012
, “
Emission Measurements and CH* Chemiluminescence of a Staged Combustion Rig for Stationary Gas Turbine Applications
,”
ASME J. Gas Turbines Power
,
134
(
8
), p.
081502
.
12.
Lamont
,
W. G.
,
Roa
,
M.
, and
Lucht
,
R. P.
,
2014
, “
Application of Artificial Neural Networks for the Prediction of Pollutant Emissions and Outlet Temperature in a Fuel-Staged Gas Turbine Combustion Rig
,”
ASME
Paper No. GT2014-25030.
13.
Lamont
,
W. G.
,
2012
, “
Experimental Study of a Staged Combustion System for Stationary Gas Turbine Applications
,”
Ph.D. thesis
,
Purdue University
,
West Lafayette, IN
.http://adsabs.harvard.edu/abs/2012PhDT.......185L
14.
Aida
,
N.
,
Nishijima
,
T.
,
Yamada
,
H.
,
Hayashi
,
S.
, and
Kawakami
,
T.
,
2003
, “
Injection of Lean Mixtures Into Hot Burned Gas for Maintaining Low-NOx Emissions Over an Extended Range of Fuel-Air Ratios in Prevaporized Combustion
,”
International Gas Turbine Congress
,
Tokyo
, Paper No. TS-142.
15.
Aida
,
N.
,
Nishijima
,
T.
,
Hayashi
,
S.
,
Yamada
,
H.
, and
Kawakami
,
T.
,
2005
, “
Combustion of Lean Prevaporized Fuel–Air Mixtures Mixed With Hot Burned Gas for Low-NOx Emissions Over an Extended Range of Fuel–Air Ratios
,”
Proc. Combust. Inst.
,
30
(
2
), pp.
2885
2892
.
16.
Adachi
,
S.
,
Iwamoto
,
A.
,
Hayashi
,
S.
,
Yamada
,
H.
, and
Kaneko
,
S.
,
2007
, “
Emissions in Combustion of Lean Methane-Air and Biomass-Air Mixtures Supported by Primary Hot Burned Gas in a Multi-Stage Gas Turbine Combustor
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
3131
3138
.
17.
Ahrens
,
D.
,
Kolb
,
M.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2014
, “
NOx Formation in a Reacting Premixed Jet in Hot Cross Flow
,”
ASME
Paper No. GT2014-26139.
18.
Ahrens
,
D.
,
Kolb
,
M.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2015
, “
Influences of Pre-Flame and Post-Flame Mixing on NOx Formation in a Reacting Premixed Jet in Hot Cross Flow
,”
ASME
Paper No. GT2015-42224.
19.
Kalghatgi
,
G.
,
1984
, “
Lift-off Heights and Visible Lengths of Vertical Turbulent Jet Diffusion Flames in Still Air
,”
Combust. Sci. Technol.
,
41
(
1–2
), pp.
17
29
.
20.
Peters
,
N.
,
2000
,
Turbulent Combustion
,
Cambridge University Press
,
Cambridge, UK
.
21.
Abramovich
,
G. N.
,
1963
,
The Theory of Turbulent Jets
,
MIT Press
,
Cambridge, MA
.
22.
Schmitt
,
D.
,
Kolb
,
M.
,
Weinzierl
,
J.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2013
, “
Ignition and Flame Stabilization of a Premixed Jet in Hot Cross Flow
,”
ASME
Paper No. GT2013-94763.
23.
Markides
,
C. N.
, and
Mastorakos
,
E.
,
2005
, “
An Experimental Study of Hydrogen Autoignition in a Turbulent Co-Flow of Heated Air
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
883
891
.
24.
Markides
,
C. N.
, and
Mastorakos
,
E.
,
2011
, “
Experimental Investigation of the Effects of Turbulence and Mixing on Autoignition Chemistry
,”
Flow, Turbul. Combust.
,
86
(
3–4
), pp.
585
608
.
25.
Blouch
,
J.
, and
Law
,
C.
,
2003
, “
Effects of Turbulence on Nonpremixed Ignition of Hydrogen in Heated Counterflow
,”
Combust. Flame
,
132
(
3
), pp.
512
522
.
26.
Robinson
,
C.
, and
Smith
,
D. B.
,
1984
, “
The Auto-Ignition Temperature of Methane
,”
J. Hazard. Mater.
,
8
(
3
), pp.
199
203
.
27.
Kerkemeier
,
S. G.
,
Frouzakis
,
C.
,
Boulouchos
,
K.
, and
Mastorakos
,
E.
,
2010
, “
Numerical Simulation of Autoignition of a Diluted Hydrogen Jet in Co-Flowing Turbulent Hot Air
,”
AIAA
Paper No. 2010-217.
28.
Habisreuther
,
P.
,
Galeazzo
,
F.
,
Prathap
,
C.
, and
Zarzalis
,
N.
,
2013
, “
Structure of Laminar Premixed Flames of Methane Near the Auto-Ignition Limit
,”
Combust. Flame
,
160
(
12
), pp.
2770
2782
.
29.
Kolb
,
M.
,
Ahrens
,
D.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2013
, “
Quantification of Mixing of a Reacting Jet in Hot Cross Flow Using Mie Scattering
,” Lasermethoden in der Strömungsmesstechnik,
Bodo Ruck
,
Munchen, Germany
.
30.
Spadaccini
,
L. J.
, and
Colket
,
M. B.
, III
,
1994
, “
Ignition Delay Characteristics of Methane Fuels
,”
Prog. Energy Combust. Sci.
,
20
(
5
), pp.
431
460
.
31.
Andrews
,
G.
,
Bradley
,
D.
, and
Lwakabamba
,
S.
,
1975
, “
Turbulence and Turbulent Flame Propagation—A Critical Appraisal
,”
Combust. Flame
,
24
, pp.
285
304
.
32.
Goodwin
,
D.
,
Malaya
,
N.
,
Moffat
,
H.
, and
Speth
,
R.
,
2003
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
,”
Chemical Vapor Deposition XVI and EUROCVD
, Vol.
14
,
Electrochemical Society
,
Paris
, pp.
2003
2008
.
33.
Smith
,
G.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
,
W. C.
, Jr
.,
Lissianski
,
V. V.
, and
Qin
,
Z.
,
1999
, “
GRI3.0 Mechanism
,”
Gas Research Institute
,
Berkley, CA
, http://www.me.berkeley. edu/gri_mech
You do not currently have access to this content.