Bursting, an irreversible failure in tube hydroforming (THF), results mainly from the local plastic instabilities that occur when the biaxial stresses imparted during the process exceed the forming limit strains of the material. To predict the burst pressure, Oyan's and Brozzo's decoupled ductile fracture criteria (DFC) were implemented as user material models in a dynamic nonlinear commercial 3D finite-element (FE) software, ls-dyna. THF of a round to V-shape was selected as a generic representative of an aerospace component for the FE simulations and experimental trials. To validate the simulation results, THF experiments up to bursting were carried out using Inconel 718 (IN 718) tubes with a thickness of 0.9 mm to measure the internal pressures during the process. When comparing the experimental and simulation results, the burst pressure predicated based on Oyane's decoupled damage criterion was found to agree better with the measured data for IN 718 than Brozzo's fracture criterion.

References

1.
Lou
,
Y.
,
Huh
,
H.
,
Lim
,
S.
, and
Pack
,
K.
,
2012
, “
New Ductile Fracture Criterion for Prediction of Fracture Forming Limit Diagrams of Sheet Metals
,”
Int. J. Solids Struct.
,
49
(
25
), pp.
3605
3615
.
2.
Lei
,
L.
,
Kang
,
B.
, and
Kang
,
S.
,
2001
, “
Prediction of the Forming Limit in Hydroforming Processes Using the Finite Element Method and a Ductile Fracture Criterion
,”
J. Mater. Process. Technol.
,
113
(1–3), pp.
673
679
.
3.
Brozzo
,
P.
,
Deluca
,
B.
, and
Rendina
,
R.
,
1972
, “
A New Method for the Prediction of Formability Limits in Metal Sheets
,”
7th Biennal Conference International Deep Drawing Research Group (IDDR)
, Amsterdam, Oct. 9–13.
4.
Oyane
,
M.
,
Sato
,
T.
,
Okimoto
,
K.
, and
Shima
,
S.
,
1980
, “
Criteria for Ductile Fracture and Their Applications
,”
J. Mech. Work. Technol.
,
4
(
1
), pp.
65
81
.
5.
Lei
,
L. P.
,
Kim
,
J.
, and
Kang
,
B. S.
,
2002
, “
Bursting Failure Prediction in Tube Hydroforming Processes by Using Rigid–Plastic FEM Combined With Ductile Fracture Criterion
,”
Int. J. Mech. Sci.
,
44
(
7
), pp.
1411
1428
.
6.
Han
,
H. N.
, and
Kim
,
K. H.
,
2003
, “
A Ductile Fracture Criterion in Sheet Metal Forming Process
,”
J. Mater. Process. Technol.
,
142
(
1
), pp.
231
238
.
7.
Ozturk
,
F.
, and
Lee
,
D.
,
2004
, “
Analysis of Forming Limits Using Ductile Fracture Criteria
,”
J. Mater. Process. Technol.
,
147
(
3
), pp.
397
404
.
8.
Liu
,
H.
,
Yang
,
Y.
,
Yu
,
Z.
,
Sun
,
Z.
, and
Wang
,
Y.
,
2009
, “
The Application of a Ductile Fracture Criterion to the Prediction of the Forming Limit of Sheet Metals
,”
J. Mater. Process. Technol.
,
209
(
14
), pp.
5443
5447
.
9.
Chen
,
J.
,
Zhou
,
X.
, and
Chen
,
J.
,
2010
, “
Sheet Metal Forming Limit Prediction Based on Plastic Deformation Energy
,”
J. Mater. Process. Technol.
,
210
(
2
), pp.
315
322
.
10.
Lei
,
L. P.
,
Kim
,
J.
,
Kang
,
S. J.
, and
Kang
,
B. S.
,
2003
, “
Rigid–Plastic Finite Element Analysis of Hydroforming Process and Its Applications
,”
J. Mater. Process. Technol.
,
139
(1–3), pp.
187
194
.
11.
Kim
,
J.
,
Kim
,
Y. W.
,
Kang
,
B. S.
, and
Hwang
,
S. M.
,
2004
, “
Finite Element Analysis for Bursting Failure Prediction in Bulge Forming of a Seamed Tube
,”
Finite Elem. Anal. Des.
,
40
(9–10), pp.
953
966
.
12.
Song
,
W. J.
,
Kim
,
S. W.
,
Kim
,
J.
, and
Kang
,
B. S.
,
2005
, “
Analytical and Numerical Analysis of Bursting Failure Prediction in Tube Hydroforming
,”
J. Mater. Process. Technol.
,
164–165
, pp.
1618
1623
.
13.
Simha
,
H. M.
,
Gholipour
,
J.
,
Bardelcik
,
A.
, and
Worswick
,
M. J.
,
2006
, “
Prediction of Necking in Tubular Hydroforming Using an Extended Stress-Based Forming Limit Curve
,”
ASME J. Eng. Mater. Technol.
,
129
(
1
), pp.
36
47
.
14.
Saboori
,
M.
,
Gholipour
,
J.
,
Champliaud
,
H.
,
Gakwaya
,
A.
,
Savoie
,
J.
, and
Wanjara
,
P.
,
2011
, “
Prediction of Burst Pressure Using a Decoupled Ductile Fracture Criterion for Tube Hydroforming of Aerospace Alloys
,” 14th International Conference on Material Forming (
ESAFORM 2011
), Belfast, UK, Apr. 27–29, pp.
301
306
.
15.
Cockcroft
,
M.
, and
Latham
,
D.
,
1968
, “
Ductility and the Workability of Metals
,”
J. Inst. Met.
,
96
(1), pp.
33
39
.
16.
Oh
,
S.
,
Chen
,
C.
, and
Kobayashi
,
S.
,
1979
, “
Ductile Fracture in Axisymmetric Extrusion and Drawing-Part 2: Workability in Extrusion and Drawing
,”
J. Eng. Ind.
,
101
(
1
), pp.
36
44
.
17.
Luo
,
M.
, and
Wierzbicki
,
T.
,
2010
, “
Numerical Failure Analysis of a Stretch-Bending Test on Dual-Phase Steel Sheets Using a Phenomenological Fracture Model
,”
Int. J. Solids Struct.
,
47
(22–23), pp.
3084
3102
.
18.
Belytschko
,
T.
,
Lin
,
J. I.
, and
Chen-Shyh
,
T.
,
1984
, “
Explicit Algorithms for the Nonlinear Dynamics of Shell
,”
Comput. Methods Appl. Mech. Eng.
,
42
(
2
), pp.
225
251
.
19.
Saboori
,
M.
,
Champliaud
,
H.
,
Gholipour
,
J.
,
Gakwaya
,
A.
,
Savoie
,
J.
, and
Wanjara
,
P.
,
2014
, “
Evaluating the Flow Stress of Aerospace Alloys for Tube Hydroforming Process by Free Expansion Testing
,”
Int. J. Adv. Manuf. Technol.
,
72
(
9–12
), pp.
1275
1286
.
20.
Farimani
,
S. M.
,
Gholipour
,
J.
,
Champliaud
,
H.
,
Savoie
,
J.
, and
Wanjara
,
P.
,
2014
, “
Numerical and Experimental Study of Preforming Stage in Tube Hydroforming
,”
Key Eng. Mater.
,
611–612
, pp.
1132
1138
.
21.
Farimani
,
S. M.
,
Champliaud
,
H.
,
Gholipour
,
J.
,
Savoie
,
J.
, and
Wanjara
,
P.
,
2013
, “
Numerical and Experimental Study of Tube Hydroforming for Aerospace Applications
,”
Key Eng. Mater.
,
554–557
, pp.
1779
1786
.
You do not currently have access to this content.