A gas turbine combustion process subjected to high levels of centrifugal acceleration has demonstrated the potential for increased flame speeds and shorter residence times. Ultracompact combustors (UCC) invoke the high-g phenomenon by introducing air and fuel into a circumferential cavity which is recessed radially outboard with respect to the primary axial core flow. Upstream air is directed tangentially into the combustion cavity to induce bulk circumferential swirl. Swirl velocities in the cavity produce a centrifugal load on the flow that is typically expressed in terms of gravitational acceleration or g-loading. The Air Force Institute of Technology (AFIT) has developed an experimental facility in which g-loads up to 2000 times the earth’s gravitational field (“2000 g’s”) have been demonstrated. In this study, the flow within the combustion cavity is examined to determine factors and conditions which invoke responses in cavity g-loads. The AFIT experiment was modified to enable optical access into the primary combustion cavity. The techniques of particle image velocimetry (PIV) and particle streak emission velocimetry (PSEV) provided high-fidelity measurements of the velocity fields within the cavity. The experimental data were compared to a set of computational fluid dynamics (CFD) solutions. Improved cavity air and fuel injection schemes were evaluated over a range of air flows and equivalence ratios. Increased combustion stability was attained by providing a uniform distribution of cavity air drivers. Lean cavity equivalence ratios at a high total airflow resulted in higher g-loads and more complete combustion, thereby showing promise for utilization of the UCC as a main combustor.

References

1.
Turns
,
S.
,
2011
,
An Introduction to Combustion: Concepts and Applications
, 3rd ed.,
McGraw-Hill
, New York.
2.
Erdmann
,
T. J.
,
Burrus
,
D. L.
,
Shouse
,
D. T.
,
Gross
,
J. T.
,
Neuroth
,
C.
, and
Caswell
,
A. W.
, 2014, “
Experimental Characterization of the Reaction Zone in an Ultra-Compact Combustor
,”
AIAA
Paper No. 2014-3630.
3.
Cottle
,
A. E.
, and
Polanka
,
M. D.
,
2016
, “
Numerical and Experimental Results From a Common-Source High-G Ultra-Compact Combustor
,”
ASME
Paper No. GT2016-56215.
4.
Lewis
,
G. D.
,
1973
, “
Centrifugal-Force Effects on Combustion
,”
Symp. (Int.) Combust.
,
14
(
1
), pp.
413
419
.
5.
Lapsa
,
A. P.
, and
Dahm
,
W. J. A.
,
2009
, “
Hyperacceleration Effects on Turbulent Combustion in Premixed Step-Stabilized Flames
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
1731
1738
.
6.
Zelina
,
J.
,
Sturgess
,
G. J.
, and
Shouse
,
D. T.
,
2004
, “
The Behavior of an Ultra-Compact Combustor (UCC) Based on Centrifugally-Enhanced Turbulent Burning Rates
,”
AIAA
Paper No. 2004-3541.
7.
Briones
,
A. M.
,
Sekar
,
B.
, and
Erdmann
,
T.
,
2015
, “
Effect of Centrifugal Force on Turbulent Premixed Flames
,”
ASME J. Eng. Gas Turbines Power
,
137
(
1
), p.
011501
.
8.
Moenter
,
D. S.
,
2006
, “
Design and Numerical Simulation of Two Dimensional Ultra Compact Combustor Model Sections for Experimental Observation of Cavity-Vane Flow Interactions
,”
M.S. thesis
, Wright-Patterson Air Force Base, Dayton, OH.http://www.dtic.mil/docs/citations/ADA456932
9.
Thomas
,
L. M.
,
2009
, “
Flow Measurements Using Particle Image Velocimetry in the Ultra Compact Combustor
,”
M.S. thesis
, Wright-Patterson Air Force Base, OH.http://www.dtic.mil/docs/citations/ADA512529
10.
LeBay
,
K. D.
,
Hankins
,
T. B.
,
Lakusta
,
P. J.
,
Branam
,
R. D.
,
Reeder
,
M. F.
, and
Kostka
,
S.
,
2010
, “
OH-PLIF Calibration and Investigation Within the Ultra Compact Combustor
,”
AIAA
Paper No. 2010-1330.
11.
LeBay
,
K. D.
,
Polanka
,
M. D.
,
Reeder
,
M. F.
, and
Branam
,
R. D.
,
2011
, “
Time-Resolved Particle Image Velocimetry Investigations Within a Sectional Ultra Compact Combustor
,”
AIAA
Paper No. 2010-895443.
12.
LeBay
,
K. D.
,
Drenth
,
A. C.
,
Thomas
,
L. M.
,
Polanka
,
M. D.
,
Branam
,
R. D.
, and
Schmidt
,
J. B.
,
2010
, “
Characterizing the Effects of G-Loading in an Ultra Compact Combustor Via Sectional Models
,”
ASME
Paper No. GT2010-22723.
13.
Bohan
,
B. T.
, and
Polanka
,
M. D.
,
2013
, “
Analysis of Flow Migration in an Ultra-Compact Combustor
,”
ASME J. Eng. Gas Turbines Power
,
135
(
5
), p.
051502
.
14.
Wilson
,
J. D.
,
Damele
,
C. J.
, and
Polanka
,
M. D.
,
2014
, “
Flame Structure Effects at High G-Loading
,”
ASME J. Eng. Gas Turbines Power
,
136
(
10
), p.
101502
.
15.
Wilson
,
J. D.
, and
Polanka
,
M. D.
,
2013
, “
Reduction of Rayleigh Losses in a High G-Loaded Ultra Compact Combustor
,”
ASME
Paper No. GT2013-94795.
16.
Damele
,
C. J.
,
Polanka
,
M. D.
,
Wilson
,
J. D.
, and
Rutledge
,
J. L.
,
2014
, “
Characterizing Thermal Exit Conditions for an Ultra Compact Combustor
,”
AIAA
Paper No. 2014-0456.
17.
Conrad
,
M. M.
,
Wilson
,
J. D.
, and
Polanka
,
M. D.
,
2013
, “
Integration Issues of an Ultra-Compact Combustor to a Jet Turbine Engine
,”
AIAA
Paper No. 2013-3711.
18.
Cottle
,
A. E.
, and
Polanka
,
M. D.
,
2015
, “
Common Flow Source for a Full Annular Ultra Compact Combustor
,”
AIAA
Paper No. 2015-0100.
19.
Mongia
,
H. C.
,
2008
, “
Recent Progress in Comprehensive Modeling of Gas Turbine Engine Combustion
,”
AIAA
Paper No. 2008-1445.
20.
Hsu
,
M. C.
,
Vogiatzis
,
K.
, and
Huang
,
P. G.
,
2003
, “
Validation and Implementation of Advanced Turbulence Models in Swirling and Separated Flows
,”
AIAA
Paper No. 2003-0766.
21.
Celik
, I
. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluid Eng.
,
130
(
7
), p.
078001
.
You do not currently have access to this content.