Abstract

The direct-fired supercritical CO2 (sCO2) cycles promise high efficiency and reduced emissions while enabling complete carbon capture. However, there is a severe lack of fundamental combustion kinetics knowledge required for the development and operation of these cycles, which operate at high pressures and with high CO2 dilution. Experiments at these conditions are very challenging and costly. In this study, a shock tube was used to investigate the auto-ignition tendencies of several mixtures under high carbon dioxide dilution and high fuel loading. Individual mixtures of oxy-syngas and oxy-methane fuels were added to CO2 bath gas environments and ignition delay time data were recorded. Reflected shock pressures neared 100 atm, above the critical pressure of carbon dioxide into the supercritical regime. In total, five mixtures were investigated with a pressure range of 70–100 atm and a temperature range of 1050–1350 K. Measured ignition delay times of all mixtures were compared with two leading chemical kinetic mechanisms for their predictive accuracy. The mixtures included four oxy-syngas and one oxy-methane compositions. The literature mechanisms tended to show good agreement with the data for the methane mixture, while these models were not able to accurately capture all behavior for syngas mixtures tested in this study. For this reason, there is a need to further investigate the discrepancies. To the best of our knowledge, we report the first ignition data for the selected mixtures at these conditions. Current work also highlights the need for further work at high pressures to fully understand the chemical kinetic behavior of these mixtures to enable the sCO2 power cycle development.

References

1.
Allam
,
R.
,
Fetvedt
,
J.
,
Forrest
,
B.
, and
Freed
,
D.
,
2014
, “
The Oxy-Fuel, Supercritical CO2 Allam Cycle: New Cycle Developments to Produce Even Lower-Cost Electricity From Fossil Fuels Without Atmospheric Emissions
,”
ASME
Paper No. GT2014-26952.10.1115/GT2014-26952
2.
Pryor
,
O. M.
,
Vasu
,
S.
,
Lu
,
X.
,
Freed
,
D.
, and
Forrest
,
B.
,
2018
, “
Development of a Global Mechanism for Oxy-Methane Combustion in a CO2 Environment
,”
ASME
Paper No. GT2018-75169.10.1115/GT2018-75169
3.
Masunov
,
A. E.
,
Atlanov
,
A. A.
, and
Vasu
,
S. S.
,
2016
, “
Molecular Dynamics Study of Combustion Reactions in a Supercritical Environment—Part 1: Carbon Dioxide and Water Force Field Parameters Refitting and Critical Isotherms of Binary Mixtures
,”
Energy Fuels
,
30
(
11
), pp.
9622
9627
.10.1021/acs.energyfuels.6b01927
4.
Strakey
,
P. A.
,
Dogan
,
O. N.
,
Holcomb
,
G. R.
, and
Richards
,
G. A.
,
2014
, “
Technology Needs for Fossil Fuel Supercritical CO2 Power Cycles
,”
Proceedings of the Fourth International Symposium—Supercritical CO2 Power Cycles
, Pittsburgh, PA, Sept. 9–10.
5.
McClung
,
A.
,
Brun
,
K.
, and
Chordia
,
L.
,
2014
, “
Technical and Economic Evaluation of Supercritical Oxy-Combustion for Power Generation
,”
Proceedings of the Fourth International Symposium—Supercritical CO2 Power Cycles
, Pittsburgh, PA, Sept. 9–10.
6.
Dostal
,
V.
,
Hejzlar
,
P.
, and
Drscoll
,
M. J.
,
2006
, “
The Supercritical Carbon Dioxide Power Cycle: Comparison to Other Advanced Power Cycles
,”
Nucl. Technol
., 154(3), pp.
283
301
.10.13182/NT06-A3734
7.
Zhou
,
C.-W.
,
Li
,
Y.
,
Burke
,
U.
,
Banyon
,
C.
,
Somers
,
K. P.
,
Ding
,
S.
,
Khan
,
S.
,
Hargis
,
J. W.
,
Sikes
,
T.
,
Mathieu
,
O.
,
Petersen
,
E. L.
,
AlAbbad
,
M.
,
Farooq
,
A.
,
Pan
,
Y.
,
Zhang
,
Y.
,
Huang
,
Z.
,
Lopez
,
J.
,
Loparo
,
Z.
,
Vasu
,
S. S.
, and
Curran
,
H. J.
,
2018
, “
An Experimental and Chemical Kinetic Modeling Study of 1,3-Butadiene Combustion: Ignition Delay Time and Laminar Flame Speed Measurements
,”
Combust. Flame
,
197
, pp.
423
438
.10.1016/j.combustflame.2018.08.006
8.
Lieuwen
,
T.
,
McDonell
,
V.
,
Petersen
,
E.
, and
Santavicca
,
D.
,
2008
, “
Fuel Flexibility Influences on Premixed Combustor Blowout, Flashback, Autoignition, and Stability
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
011506
.10.1115/1.2771243
9.
Delimont
,
J.
,
McClung
,
A.
, and
Portnoff
,
M.
,
2017
, “
Direct Fired Oxy-Fuel Combustor for sCO2 Power Cycles: 1 MW Scale Design and Preliminary Bench Top Testing
,”
ASME
Paper No. GT2017-64952.10.1115/GT2017-64952
10.
Hanson
,
R. K.
, and
Davidson
,
D. F.
,
2014
, “
Recent Advances in Laser Absorption and Shock Tube Methods for Studies of Combustion Chemistry
,”
Prog. Energy Combust. Sci.
,
44
, pp.
103
114
.10.1016/j.pecs.2014.05.001
11.
Vasu
,
S. S.
,
Davidson
,
D. F.
, and
Hanson
,
R. K.
,
2008
, “
Jet Fuel Ignition Delay Times: Shock Tube Experiments Over Wide Conditions and Surrogate Model Predictions
,”
Combust. Flame
,
152
(
1–2
), pp.
125
143
.10.1016/j.combustflame.2007.06.019
12.
Kéromnès
,
A.
,
Metcalfe
,
W. K.
,
Heufer
,
K. A.
,
Donohoe
,
N.
,
Das
,
A. K.
,
Sung
,
C.-J.
,
Herzler
,
J.
,
Naumann
,
C.
,
Griebel
,
P.
,
Mathieu
,
O.
,
Krejci
,
M. C.
,
Petersen
,
E. L.
,
Pitz
,
W. J.
, and
Curran
,
H. J.
,
2013
, “
An Experimental and Detailed Chemical Kinetic Modeling Study of Hydrogen and Syngas Mixture Oxidation at Elevated Pressures
,”
Combust. Flame
,
160
(
6
), pp.
995
1011
.10.1016/j.combustflame.2013.01.001
13.
Walton
,
S. M.
,
He
,
X.
,
Zigler
,
B. T.
, and
Wooldridge
,
M. S.
,
2007
, “
An Experimental Investigation of the Ignition Properties of Hydrogen and Carbon Monoxide Mixtures for Syngas Turbine Applications
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
3147
3154
.10.1016/j.proci.2006.08.059
14.
Vasu
,
S. S.
,
Davidson
,
D. F.
, and
Hanson
,
R. K.
,
2011
, “
Shock Tube Study of Syngas Ignition in Rich CO2 Mixtures and Determination of the Rate of H + O2+ CO2 → HO2 + CO2
,”
Energy Fuels
,
25
(
3
), pp.
990
997
.10.1021/ef1015928
15.
Thi
,
L. D.
,
Zhang
,
Y.
, and
Huang
,
Z.
,
2014
, “
Shock Tube Study on Ignition Delay of Multi-Component Syngas Mixtures—Effect of Equivalence Ratio
,”
Int. J. Hydrogen Energy
,
39
(
11
), pp.
6034
6043
.10.1016/j.ijhydene.2014.01.170
16.
Petersen
,
E. L.
,
Kalitan
,
D. M.
,
Barrett
,
A. B.
,
Reehal
,
S. C.
,
Mertens
,
J. D.
,
Beerer
,
D. J.
,
Hack
,
R. L.
, and
McDonell
,
V. G.
,
2007
, “
New Syngas/Air Ignition Data at Lower Temperature and Elevated Pressure and Comparison to Current Kinetics Models
,”
Combust. Flame
,
149
(
1–2
), pp.
244
247
.10.1016/j.combustflame.2006.12.007
17.
Koroglu
,
B.
,
Pryor
,
O. M.
,
Lopez
,
J.
,
Nash
,
L.
, and
Vasu
,
S. S.
,
2016
, “
Shock Tube Ignition Delay Times and Methane Time-Histories Measurements During Excess CO2 Diluted Oxy-Methane Combustion
,”
Combust. Flame
,
164
, pp.
152
163
.10.1016/j.combustflame.2015.11.011
18.
Koroglu
,
B.
,
Pryor
,
O.
,
Lopez
,
J.
,
Nash
,
L.
, and
Vasu
,
S. S.
,
2015
, “
Methane Ignition Delay Times in CO2 Diluted Mixtures in a Shock Tube
,”
AIAA
Paper No. 2015-4088.10.2514/6.2015-4088
19.
Pryor
,
O.
,
Barak
,
S.
,
Lopez
,
J.
,
Ninnemann
,
E.
,
Koroglu
,
B.
,
Nash
,
L.
, and
Vasu
,
S.
,
2017
, “
High Pressure Shock Tube Ignition Delay Time Measurements During Oxy-Methane Combustion With High Levels of CO2 Dilution
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042208
.10.1115/1.4036254
20.
Pryor
,
O. M.
,
Barak
,
S.
,
Koroglu
,
B.
,
Ninnemann
,
E.
, and
Vasu
,
S. S.
,
2017
, “
Measurements and Interpretation of Shock Tube Ignition Delay Times in Highly CO2 Diluted Mixtures Using Multiple Diagnostics
,”
Combust. Flame
,
180
, pp.
63
76
.10.1016/j.combustflame.2017.02.020
21.
Hargis
,
J. W.
, and
Petersen
,
E. L.
,
2015
, “
Methane Ignition in a Shock Tube With High Levels of CO2 Dilution: Consideration of the Reflected-Shock Bifurcation
,”
Energy Fuels
,
29
(
11
), pp.
7712
7726
.10.1021/acs.energyfuels.5b01760
22.
Shao
,
J.
,
Choudhary
,
R.
,
Davidson
,
D. F.
,
Hanson
,
R. K.
,
Barak
,
S.
, and
Vasu
,
S.
,
2018
, “
Ignition Delay Times of Methane and Hydrogen Highly Diluted in Carbon Dioxide at High Pressures Up to 300 Atm
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
4555
4562
.10.1016/j.proci.2018.08.002
23.
Barak
,
S.
,
Ninnemann
,
E.
,
Neupane
,
S.
,
Barnes
,
F.
,
Kapat
,
J.
, and
Vasu
,
S.
,
2019
, “
High-Pressure Oxy-Syngas Ignition Delay Times With CO2 Dilution: Shock Tube Measurements and Comparison of the Performance of Kinetic Mechanisms
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021011
.10.1115/1.4040904
24.
Barak
,
S.
,
Pryor
,
O.
,
Lopez
,
J.
,
Ninnemann
,
E.
,
Vasu
,
S.
, and
Koroglu
,
B.
,
2017
, “
High-Speed Imaging and Measurements of Ignition Delay Times in Oxy-Syngas Mixtures With High CO2 Dilution in a Shock Tube
,”
ASME J. Eng. Gas Turbines Power
,
139
(
12
), p.
121503
.10.1115/1.4037458
25.
Ninnemann
,
E.
,
Koroglu
,
B.
,
Pryor
,
O.
,
Barak
,
S.
,
Nash
,
L.
,
Loparo
,
Z.
,
Sosa
,
J.
,
Ahmed
,
K.
, and
Vasu
,
S.
,
2018
, “
New Insights Into the Shock Tube Ignition of H2/O2 at Low to Moderate Temperatures Using High-Speed End-Wall Imaging
,”
Combust. Flame
,
187
(
supp. C
), pp.
11
21
.10.1016/j.combustflame.2017.08.021
26.
Loparo
,
Z. E.
,
Lopez
,
J. G.
,
Neupane
,
S.
,
Partridge
,
W. P.
,
Vodopyanov
,
K.
, and
Vasu
,
S. S.
,
2017
, “
Fuel-Rich n-Heptane Oxidation: A Shock Tube and Laser Absorption Study
,”
Combust. Flame
,
185
(
supp. C
), pp.
220
233
.10.1016/j.combustflame.2017.07.016
27.
Barak, S., Pryor, O., Ninnemann, E., Neupane, S., Lu, X., Forrest, B., and Vasu, S., 2019, “Ignition Delay Times of Syngas and Methane in sCO2 Diluted Mixtures for Direct-Fired Cycles,”
ASME
Paper No. GT2019-90178.10.1115/GT2019-90178
28.
Gaydon
,
A. G.
, and
Hurle
,
I. R.
,
1963
,
The Shock Tube in High-Temperature Chemical Physics
,
Reinhold
,
New York
.
29.
Hall
,
J. M.
,
Rickard
,
M. J. A.
, and
Petersen
,
E. L.
,
2005
, “
Comparison of Characteristic Time Diagnostics for Ignition and Oxidation of Fuel/Oxidizer Mixtures Behind Reflected Shock Waves
,”
Combust. Sci. Technol.
,
177
(
3
), pp.
455
483
.10.1080/00102200590909003
30.
Petersen
,
E. L.
, and
Hanson
,
R. K.
,
2001
, “
Nonideal Effects Behind Reflected Shock Waves in a High-Pressure Shock Tube
,”
Shock Waves
,
10
(
6
), pp.
405
420
.10.1007/PL00004051
31.
Vasu, S. S., Davidson
,
D. F.
, and
Hanson
,
R. K.
,
2009
, “
OH Time-Histories During Oxidation of n-Heptane and Methylcyclohexane at High Pressures and Temperatures
,”
Combust. Flame
, 156(4), pp. 736–749.10.1016/j.combustflame.2008.09.006
32.
Hong
,
Z.
,
Pang
,
G. A.
,
Vasu
,
S. S.
,
Davidson
,
D. F.
, and
Hanson
,
R. K.
,
2009
, “
The Use of Driver Inserts to Reduce Non-Ideal Pressure Variations Behind Reflected Shock Waves
,”
Shock Waves
,
19
(
2
), pp.
113
123
.10.1007/s00193-009-0205-y
33.
Atkinson
,
R.
,
Perry
,
R. A.
, and
Pitts
,
J. N.
, Jr.
,
1977
, “
Absolute Rate Constants for the Reaction of OH Radicals With Allene, 1,3-Butadiene, and 3-Methyl-1-Butene Over the Temperature Range 299–424 °K
,”
J. Chem. Phys.
,
67
(
7
), pp.
3170
3174
.10.1063/1.435230
34.
Davidson
,
D. F.
, and
Hanson
,
R. K.
,
2004
, “
Interpreting Shock Tube Ignition Data
,”
Int. J. Chem. Kinet.
,
36
(
9
), pp.
510
523
.10.1002/kin.20024
35.
Li
,
Y.
,
Zhou
,
C.-W.
,
Somers
,
K. P.
,
Zhang
,
K.
, and
Curran
,
H. J.
,
2017
, “
The Oxidation of 2-Butene: A High Pressure Ignition Delay, Kinetic Modeling Study and Reactivity Comparison With Isobutene and 1-Butene
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
403
411
.10.1016/j.proci.2016.05.052
36.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
, and
Gardiner
,
W. C.
, Jr.
,
1999
, “
GRI-Mech 3.0
,” http://www.me.berkeley.edu/gri_mech
37.
Ihme
,
M.
,
Sun
,
Y.
, and
Deiterding
,
R.
,
2013
, “
Detailed Simulations of Shock-Bifurcation and Ignition of an Argon-Diluted Hydrogen/Oxygen Mixture in a Shock Tube
,”
AIAA Paper No
. 2013–0538.
38.
Millikan
,
R. C.
, and
White
,
D. R.
,
1963
, “
Systematics of Vibrational Relaxation
,”
J. Chem. Phys.
,
39
(
12
), pp.
3209
3213
.10.1063/1.1734182
39.
Petersen
,
E.
,
1999
, “
A Shock Tube and Diagnostics for Chemistry Measurements at Elevated Pressures With Application to Methane Ignition
,” Ph.D. dissertation, Stanford University, Stanford, CA.
40.
Glarborg
,
P.
, and
Bentzen
,
L. L. B.
,
2008
, “
Chemical Effects of a High CO2 Concentration in Oxy-Fuel Combustion of Methane
,”
Energy Fuels
,
22
(
1
), pp.
291
296
.10.1021/ef7005854
41.
Liu
,
F.
,
Guo
,
H.
, and
Smallwood
,
G. J.
,
2003
, “
The Chemical Effect of CO2 Replacement of N2 in Air on the Burning Velocity of CH4 and H2 Premixed Flames
,”
Combust. Flame
,
133
(
4
), pp.
495
497
.10.1016/S0010-2180(03)00019-1
42.
Zeng
,
W.
,
Ma
,
H.
,
Liang
,
Y.
, and
Hu
,
E.
,
2015
, “
Experimental and Modeling Study on Effects of N2 and CO2 on Ignition Characteristics of Methane/Air Mixture
,”
J. Adv. Res.
,
6
(
2
), pp.
189
201
.10.1016/j.jare.2014.01.003
You do not currently have access to this content.