Abstract

This study investigates the applicability of an Euler–Lagrange approach for the calculation of nucleation and condensation of steam flows. Supersonic nozzles are used as generic validation cases, as their high expansion rates replicate the flow conditions in real turbines. Experimental and numerical validation data for these nozzles are provided by the International Wet Steam Modeling Project of Starzmann et al. (2018, “Results of the International Wet Steam Modeling Project,” Proc. Inst. Mech. Eng. A, 232(5), pp. 550–570). In contrast to most participants of that project, an Euler–Lagrange approach is utilized for this study. Therefore, the classical nucleation theory with corrections and different droplet growth laws is incorporated into the discrete phase model of ansysfluent. Suggestions for an efficient implementation are presented. The Euler–Lagrange results show a good agreement with the experimental and numerical validation data. The sensitivities of the Euler–Lagrange approach to modeling parameters are analyzed. Finally, an optimal parameter set for the calculation of nucleation and condensation is proposed.

References

1.
Hesketh
,
J. A.
, and
Walker
,
P. J.
,
2005
, “
Effects of Wetness in Steam Turbines
,”
Proc. Inst. Mech. Eng. Part C
,
219
(
12
), pp.
1301
1314
.10.1243/095440605X32110
2.
Bakhtar
,
F.
,
2004
, “
Special Issue on Wet Steam—Part 1
,”
Proc. Inst. Mech. Eng. Part C
,
218
(
8
), pp.
1
3
.10.1243/0954406041474228
3.
Bakhtar
,
F.
,
Young
,
J. B.
,
White
,
A. J.
, and
Simpson
,
D. A.
,
2005
, “
Classical Nucleation Theory and Its Application to Condensing Steam Flow Calculations
,”
Proc. Inst. Mech. Eng. Part J
,
219
(
12
), pp.
1315
1333
.10.1243/095440605X8379
4.
Young
,
J. B.
, and
White
,
A. J.
,
2014
, “
Special Issue on the Baumann Wet Steam Conference
,”
Proc. Inst. Mech. Eng. Part A
,
228
(
2
), pp.
108
109
.10.1177/0957650914523366
5.
Starzmann
,
J.
,
Hughes
,
F. R.
,
Schuster
,
S.
,
White
,
A. J.
,
Halama
,
J.
,
Hric
,
V.
,
Kolovratník
,
M.
,
Lee
,
H.
,
Sova
,
L.
,
Št'astný
,
M.
,
Grübel
,
M.
,
Schatz
,
M.
,
Vogt
,
D. M.
,
Patel
,
Y.
,
Patel
,
G.
,
Turunen-Saaresti
,
T.
,
Gribin
,
V.
,
Tishchenko
,
V.
,
Gavrilov
,
I.
,
Kim
,
C.
,
Baek
,
J.
,
Wu
,
X.
,
Yang
,
J.
,
Dykas
,
S.
,
Wróblewski
,
W.
,
Yamamoto
,
S.
,
Feng
,
Z.
, and
Li
,
L.
,
2018
, “
Results of the International Wet Steam Modeling Project
,”
Proc. Inst. Mech. Eng. A
,
232
(
5
), pp.
550
570
.10.1177/0957650918758779
6.
Hughes
,
F. R.
,
Starzmann
,
J.
,
White
,
A. J.
, and
Young
,
J. B.
,
2016
, “
A Comparison of Modeling Techniques for Polydispersed Droplet Spectra in Steam Turbines
,”
ASME J. Eng. Gas Turbines Power
,
138
(
4
), p.
143
.10.1115/1.4031389
7.
Schuster
,
S.
,
Brillert
,
D.
, and
Benra
,
F.-K.
,
2018
, “
Condensation in Radial Turbines—Part II: Application of the Mathematical Model to a Radial Turbine Series
,”
ASME J. Turbomach.
,
140
(
10
), p.
289
.10.1115/1.4040935
8.
Young
,
J. B.
,
1992
, “
Two-Dimensional, Nonequilibrium, Wet-Steam Calculations for Nozzles and Turbine Cascades
,”
ASME J. Turbomach.
,
114
(
3
), pp.
569
579
.10.1115/1.2929181
9.
White
,
A. J.
, and
Young
,
J. B.
,
1993
, “
Time-Marching Method for the Prediction of Two-Dimensional, Unsteady Flows of Condensing Steam
,”
J. Propul. Power
,
9
(
4
), pp.
579
587
.10.2514/3.23661
10.
Gyarmathy
,
G.
,
2005
, “
Nucleation of Steam in High-Pressure Nozzle Experiments
,”
Proc. Inst. Mech. Eng., Part A
,
219
(
6
), pp.
511
521
.10.1243/095765005X31388
11.
Bakhtar
,
F.
,
White
,
A. J.
, and
Mashmoushy
,
H.
,
2005
, “
Theoretical Treatments of Two-Dimensional Two-Phase Flows of Steam and Comparison With Cascade Measurements
,”
Proc. Inst. Mech. Eng., Part C
,
219
(
12
), pp.
1335
1355
.10.1243/095440605X31454
12.
McDonald
,
J. E.
,
1962
, “
Homogeneous Nucleation of Vapor Condensation: I—Thermodynamic Aspects
,”
Am. J. Phys.
,
30
(
12
), pp.
870
877
.10.1119/1.1941841
13.
McDonald
,
J. E.
,
1963
, “
Homogeneous Nucleation of Vapor Condensation: II—Kinetic Aspects
,”
Am. J. Phys.
,
31
(
1
), pp.
31
41
.10.1119/1.1969234
14.
Courtney
,
W. G.
,
1961
, “
Remarks on Homogeneous Nucleation
,”
J. Chem. Phys.
,
35
(
6
), pp.
2249
2250
.10.1063/1.1732252
15.
Kantrowitz
,
A.
,
1951
, “
Nucleation in Very Rapid Vapor Expansions
,”
J. Chem. Phys.
,
19
(
9
), pp.
1097
1100
.10.1063/1.1748482
16.
Kashchiev
,
D.
,
1969
, “
Solution of the Non-Steady State Problem in Nucleation Kinetics
,”
Surf. Sci.
,
14
(
1
), pp.
209
220
.10.1016/0039-6028(69)90055-7
17.
Young
,
J. B.
,
1980
,
Spontaneous Condensation of Steam in Supersonic Nozzles: N81-13307
,
Whittle Laboratory
,
University of Cambridge
, Cambridge, UK.
18.
Lamanna
,
G.
,
2000
, “
On Nucleation and Droplet Growth in Condensing Nozzle Flows
,”
Ph.D. thesis
,
Technische Universiteit Eindhoven
, Eindhoven, The Netherlands.https://www.researchgate.net/publication/254852278_On_nucleation_and_droplet_growth_in_condensing_nozzle_flows
19.
Gyarmathy
,
G.
,
1962
, “
Grundlagen Einer Theorie Der Nassdampfturbine
,” Ph.D. thesis,
Eidgenössische Technische Hochschule Zürich
, Zürich, Switzerland.
20.
Hill
,
P. G.
,
1966
, “
Condensation of Water Vapour During Supersonic Expansion in Nozzles
,”
J. Fluid Mech.
,
25
(
3
), pp.
593
620
.10.1017/S0022112066000284
21.
Wittmann
,
T.
,
Lück
,
S.
,
Bode
,
C.
, and
Friedrichs
,
J.
,
2019
, “
Numerical Simulation of Nucleation and Condensation in Nozzles and Radial Turbines
,”
CADFEM ANSYS Simulation Conference
, Düsseldorf, Germany.
22.
Vehkamäki
,
H.
,
2006
,
Classical Nucleation Theory in Multicomponent Systems
,
Springer
,
Berlin and New York
.
23.
Morsi
,
S. A.
, and
Alexander
,
A. J.
,
1972
, “
An Investigation of Particle Trajectories in Two-Phase Flow Systems
,”
J. Fluid Mech.
,
55
(
02
), p.
193
.10.1017/S0022112072001806
24.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
ASME J. Fluids Eng.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
25.
The International Association for the Properties of Water and Steam
,
2012
, “
Revised Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam
,” The International Association for the Properties of Water and Steam, Luzern.http://www.iapws.org/relguide/IF97-Rev.html
26.
Wagner
,
W.
, and
Kretzschmar
,
H.-J.
,
2008
,
International Steam Tables: Properties of Water and Steam Based on the Industrial Formulation IAPWS-IF97
, 2nd ed.,
Springer
,
Berlin
.
27.
The International Association for the Properties of Water and Steam
,
2008
,
Release on the IAPWS Formulation 2008 for the Viscosity of Ordinary Water Substance
,
The International Association for the Properties of Water and Steam
,
Berlin
.
28.
The International Association for the Properties of Water and Steam
,
2011
,
Release on the IAPWS Formulation 2011 for the Thermal Conductivity of Ordinary Water Substance
,
The International Association for the Properties of Water and Steam
,
Pilsen
.
29.
Moses
,
C. A.
, and
Stein
,
G. D.
,
1978
, “
On the Growth of Steam Droplets Formed in a Laval Nozzle Using Both Static Pressure and Light Scattering Measurements
,”
ASME J. Fluids Eng.
,
100
(
3
), pp.
311
322
.10.1115/1.3448672
30.
Gyarmathy
,
G.
, and
Meyer
,
H.
,
1965
, “
Spontane Kondensation Teil 2: Einfluss Der Entspannungsschnelligkeit Auf Die Nebelbildung in Übersättigtem Dampf
,”
VDI-Forschungsheft 508
,
VDI Verlag GmbH
, Düsseldorf, Germany.
You do not currently have access to this content.