Abstract

Torque produced by the internal combustion (IC) engine is desired to be of similar value for consecutive combustion cycles; nevertheless, difference occurs in the cyclic torque due to uncertainties in its generation. Variations between output work of successive combustion cycles are considered as the main cause of imbalance in the cyclic torque. Such variations are displayed in engine output torque and affect the engine performance. In this paper, a novel model-based unified framework is proposed for the detection and mitigation of cyclic torque imbalance in a gasoline engine by employing the first principle-based engine model (FPEM). Engine speed dynamics in the model are transformed to develop the direct relationship between engine speed dynamics and fuel input. Fault in fuel injection subsystem is induced to generate imbalance in the cyclic torque. FPEM-based uniform second-order sliding mode (USOSM) observer is applied for estimation of the unknown input, i.e., net piston force (fn) from engine speed dynamics to detect imbalance in the cyclic torque. Estimated net piston force (fn) is utilized to design the control law for certainty equivalence super twisting algorithm (CESTA) based fault tolerant control (FTC) technique to mitigate the torque imbalance. The results of numerical simulation demonstrated that the desired objective is achieved by the proposed unified framework.

References

1.
Medina
,
A.
,
Curto-Risso
,
P. L.
,
Hernández
,
A. C.
,
Guzmán-Vargas
,
L.
,
Angulo-Brown
,
F.
, and
Asok
,
K. S.
,
2014
,
Quasi-Dimensional Simulation of Spark Ignition Engines
,
Springer
,
Berlin
, pp.
107
145
.
2.
Meyer
,
J.
,
2011
, “
Calibration Reduction in Internal Combustion Engine Fueling Control: Modeling, Estimation and Stability Robustness
,”
Ph.D. thesis
,
The Ohio State University
,
Columbus, OH
, pp.
20
27
. https://www.semanticscholar.org/paper/Calibration-reduction-in-internal-combustion-engine-Meyer/1f79a3f85eb1e7d17760b76b08cc171e559bd144
3.
Husted
,
H.
,
Kruger
,
D.
,
Fattic
,
G.
,
Ripley
,
G.
, and
Kelly
,
E.
,
2007
, “
Cylinder Pressure-Based Control of Pre-Mixed Diesel Combustion
,”
SAE
Paper No. 2007-01-0773.10.4271/2007-01-0773
4.
Reitz
,
R.
, and
Von der Ehe
,
J.
,
2006
, “
Use of in-Cylinder Pressure Measurement and the Response Surface Method for Combustion Feedback Control in a Diesel Engine
,”
Proc. Inst. Mech. Eng., Part D
,
220
(
11
), pp.
1657
1666
.10.1243/09544070JAUTO30
5.
He
,
B.
,
Shen
,
T.
,
Kako
,
J.
, and
Ouyang
,
M.
,
2008
, “
Input Observer-Based Individual Cylinder Air-Fuel Ratio Control: Modelling, Design and Validation
,”
IEEE Trans. Control Syst. Technol.
,
16
(
5
), pp.
1057
1065
.10.1109/TCST.2007.916323
6.
Taraza
,
D.
,
Henein
,
N.
, and
Bryzik
,
W.
,
2001
, “
The Frequency Analysis of the Crankshaft's Speed Variation: A Reliable Tool for Diesel Engine Diagnosis
,”
ASME J. Eng. Gas Turbines Power
,
123
(
2
), pp.
428
432
.10.1115/1.1359479
7.
Ali
,
S. A.
, and
Saraswati
,
S.
,
2015
, “
Cycle-by-Cycle Estimation of Cylinder Pressure and Indicated Torque Waveform Using Crankshaft Speed Fluctuations
,”
Trans. Inst. Meas. Control
,
37
(
6
), pp.
813
825
.10.1177/0142331214549093
8.
Li
,
H.
,
Huang
,
Y.
,
Li
,
G.
, and
Yang
,
Y.
,
2015
, “
Research on the Cylinder-by-Cylinder Variations Detection and Control Algorithm of Diesel Engine
,”
SAE
Paper No. 2015-01-1644.10.4271/2015-01-1644
9.
Ostman
,
F.
, and
Toivonen
,
H. T.
,
2011
, “
Adaptive Cylinder Balancing of Internal Combustion Engines
,”
IEEE Trans. Control Syst. Technol.
,
19
(
4
), pp.
782
791
.10.1109/TCST.2010.2052925
10.
Saxén
,
J.-E.
,
Hyvämäki
,
T.
,
Björkqvist
,
J.
,
Ostman
,
F.
, and
Toivonen
,
H. T.
,
2014
, “
Power Balancing of Internal Combustion Engines—A Time and Frequency Domain Analysis
,”
IFAC Proc. Vol.
,
47
(
3
), pp.
10802
10807
.10.3182/20140824-6-ZA-1003.02233
11.
Walter
,
A.
,
Lingenfelser
,
C.
,
Kiencke
,
U.
,
Jones
,
S.
, and
Winkler
,
T.
,
2008
, “
Cylinder Balancing Based on Reconstructed Engine Torque for Vehicles Fitted With a Dual Mass Flywheel (DMF)
,”
SAE Int. J. Passenger Cars-Mech. Syst.
,
1
(
1
), pp.
810
819
.10.4271/2008-01-1019
12.
Zhou
,
F.
,
Fu
,
J.
,
Shu
,
J.
,
Liu
,
J.
,
Wang
,
S.
, and
Feng
,
R.
,
2016
, “
Numerical Simulation Coupling With Experimental Study on the Non-Uniform of Each Cylinder Gas Exchange and Working Processes of a Multi-Cylinder Gasoline Engine Under Transient Conditions
,”
Energy Convers. Manage.
,
123
, pp.
104
115
.10.1016/j.enconman.2016.06.028
13.
Al-Durra
,
A.
,
2014
, “
Adaptive Sliding Mode Observer for Engine Cylinder Pressure Imbalance Under Different Parameter Uncertainties
,”
IEEE Access
,
2
, pp.
1085
1091
.10.1109/ACCESS.2014.2358954
14.
Bennett
,
C.
,
Dunne
,
J.
,
Trimby
,
S.
, and
Richardson
,
D.
,
2017
, “
Engine Cylinder Pressure Reconstruction Using Crank Kinematics and Recurrently-Trained Neural Networks
,”
Mech. Syst. Signal Process.
,
85
, pp.
126
145
.10.1016/j.ymssp.2016.07.015
15.
Anjum
,
R.
,
Bhatti
,
A. I.
,
Yar
,
A.
, and
Ahmed
,
Q.
,
2019
, “
Cyclic Torque Imbalance Detection in Gasoline Engines Using a Uniform Second-Order Sliding Mode Observer
,”
Proc. Inst. Mech. Eng., Part D
,
233
(
13
), pp.
3515
3527
.10.1177/0954407018820399
16.
Yar
,
A.
,
Bhatti
,
A.
, and
Ahmed
,
Q.
,
2017
, “
First Principle-Based Control Oriented Model of a Gasoline Engine
,”
ASME J. Dyn. Syst. Meas. Control
,
139
(
5
), p.
051002
.10.1115/1.4035174
17.
Yar
,
A.
,
Bhatti
,
A.
, and
Ahmed
,
Q.
,
2018
, “
First Principle Based Control Oriented Gasoline Engine Model Including Lumped Cylinder Dynamics
,”
ASME J. Dyn. Syst, Meas. Control
,
140
(
8
), p.
081011
.10.1115/1.4039195
18.
Guzzella
,
L.
, and
Onder
,
C.
,
2009
,
Introduction to Modeling and Control of Internal Combustion Engine Systems
,
Springer Science & Business Media
,
Berlin
, pp.
21
137
.
19.
Eriksson
,
L.
, and
Nielsen
,
L.
,
2014
,
Modeling and Control of Engines and Drivelines
,
Wiley
,
Hoboken, NJ
, pp.
145
210
.
20.
Cooney
,
C.
,
Worm
,
J.
,
Michalek
,
D.
, and
Naber
,
J.
,
2008
, “
Wiebe Function Parameter Determination for Mass Fraction Burn Calculation in an Ethanol-Gasoline Fuelled SI Engine
,”
J. KONES
,
15
(
3
), pp.
567
574
. http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-article-BUJ8-0003-0040
21.
Hendricks
,
E.
, and
Sorenson
,
S. C.
,
1990
, “
Mean Value Modelling of Spark Ignition Engines
,”
SAE Trans.
, 99, pp.
1359
1373
.https://www.jstor.org/stable/44548158?seq=1
22.
Pulkrabek
,
W. W.
,
2014
,
Engineering Fundamentals of the Internal Combustion Engine
,
Pearson Prentice Hall
,
Upper Saddle River, NJ
, pp.
68
121
.
23.
Yar
,
A.
,
Bhatti
,
A. I.
, and
Ahmed
,
Q.
,
2018
, “
First Principle Based Control Oriented Model of a Gasoline Engine Including Multi-Cylinder Dynamics
,”
Control Eng. Pract.
,
70
, pp.
63
76
.10.1016/j.conengprac.2017.09.020
24.
Bartolini
,
G.
,
Fridman
,
L.
, and
Usai
,
E.
,
2008
,
Modern Sliding Mode Control Theory: New Perspectives and Applications
, Vol.
375
,
Springer
,
Berlin
, pp.
293
319
.
25.
Davila
,
J.
,
Fridman
,
L.
, and
Poznyak
,
A.
,
2006
, “
Observation and Identification of Mechanical Systems Via Second Order Sliding Modes
,”
Int. J. Control
,
79
(
10
), pp.
1251
1262
.10.1080/00207170600801635
26.
Cruz-Zavala
,
E.
,
Moreno
,
J. A.
, and
Fridman
,
L.
,
2010
, “
Uniform Second-Order Sliding Mode Observer for Mechanical Systems
,”
11th International Workshop on Variable Structure Systems (VSS)
, Mexico City, Mexico, June 26–28, pp.
14
19
.10.1109/VSS.2010.5544656
27.
Davila
,
J.
,
Fridman
,
L.
, and
Levant
,
A.
,
2005
, “
Second-Order Sliding-Mode Observer for Mechanical Systems
,”
IEEE Trans. Autom. Control
,
50
(
11
), pp.
1785
1789
.10.1109/TAC.2005.858636
28.
Chen
,
C.-T.
,
1998
,
Linear System Theory and Design
,
Oxford University Press
,
Oxford, UK
, pp.
207
240
.
29.
Levant
,
A.
,
1993
, “
Sliding Order and Sliding Accuracy in Sliding Mode Control
,”
Int. J. Control
,
58
(
6
), pp.
1247
1263
.10.1080/00207179308923053
30.
Anjum
,
R.
,
Yar
,
A.
,
Shah
,
S.
,
Ahmed
,
Q.
, and
Bhatti
,
A.
,
2019
, “
Observer Based Robust Control Design for Mitigation of Cyclic Torque Imbalance in Gasoline Engines
,” Third IEEE Conference on Control Technology and Application (
CCTA
), Hong Kong, China, Aug. 19–21, pp.
1020
1026
.10.1109/CCTA.2019.8920418
31.
Brégeault
,
V.
,
Plestan
,
F.
,
Shtessel
,
Y.
, and
Poznyak
,
A.
,
2010
, “
Adaptive Sliding Mode Control for an Electropneumatic Actuator
,” 11th International Workshop on Variable Structure Systems (
VSS
), Mexico City, Mexico, June 26–28, pp.
260
265
.10.1109/VSS.2010.5544714
32.
Shtessel
,
Y.
,
Taleb
,
M.
, and
Plestan
,
F.
,
2012
, “
A Novel Adaptive-Gain Supertwisting Sliding Mode Controller: Methodology and Application
,”
Automatica
,
48
(
5
), pp.
759
769
.10.1016/j.automatica.2012.02.024
33.
Barth
,
A.
,
Reichhartinger
,
M.
,
Wulff
,
K.
,
Horn
,
M.
, and
Reger
,
J.
,
2016
, “
Certainty Equivalence Adaptation Combined With Super-Twisting Sliding-Mode Control
,”
Int. J. Control
,
89
(
9
), pp.
1767
1776
.10.1080/00207179.2015.1132850
You do not currently have access to this content.