Abstract

In an effort to reduce the harmful effects of greenhouse gas emissions, ammonia is being pursued as a fuel for power generation as it is a carbon-free energy source. However, the use of ammonia-air mixtures in premixed swirl combustors poses challenges due to low flame speed, reactivity, and high Nitrous oxide emissions. This study attempts to overcome lean blowout limits of methane-ammonia-air mixtures by a novel, multipoint (O(103)) injection strategy, whereby micron-sized holes on the swirler vanes generate a coflowing stream of fuel and air, which is then injected into a swirling air cross-flow. The resulting improvement in mixing facilitated by increases in momentum flux ratio and fine-scale turbulence is found to reduce lean blowout (LBO) limits to equivalence ratios between 0.65 and 0.7 for mixtures containing ammonia as high as 80–90% by volume. The measurements carried out using a model-swirl combustor setup are analyzed further using zero-dimensional chemical kinetic models as well as CH* and OH* chemiluminescence. Chemiluminescence imaging shows the heat release zone to move downstream and broaden with an increase in ammonia content, as a result of decreasing flame speed. This forms a precursor to lean blow out through the action of instabilities at the flame front, which is potentially alleviated by the improved mixing achieved through the multipoint injection strategy. The resulting ultrashort mixing length can lead to a compact combustor design with the ability to lower LBO limits and improve Nitrous oxide emissions while utilizing carbon-free ammonia.

References

1.
Karl
,
T. R.
,
Melillo
,
J. M.
,
Peterson
,
T. C.
, and
Hassol
,
S. J.
,
2009
,
Global Climate Change Impacts in the United States
,
Cambridge University Press
, Cambridge, UK.
2.
Annual Energy Outlook
,
2010
,
Energy Information Administration
,
Department of Energy
, Vol.
92010
, Washington, DC, pp.
1
15
.
3.
Kobayashi
,
H.
,
Hayakawa
,
A.
,
Somarathne
,
K. K. A.
, and
Okafor
,
E. C.
,
2019
, “
Science and Technology of Ammonia Combustion
,”
Proc. Combust. Inst.
,
37
(
1
), pp.
109
133
.10.1016/j.proci.2018.09.029
4.
Smith
,
C.
,
Hill
,
A. K.
, and
Torrente-Murciano
,
L.
,
2020
, “
Current and Future Role of Haber–Bosch Ammonia in a Carbon-Free Energy Landscape
,”
Energy Environ. Sci.
,
13
(
2
), pp.
331
344
.10.1039/C9EE02873K
5.
Verkamp
,
F.
,
Hardin
,
M.
, and
Williams
,
J.
,
1967
, “
Ammonia Combustion Properties and Performance in Gas-Turbine Burners
,”
Symposium (International) on Combustion
, University of California, Berkeley, CA, Aug. 1966, Vol.
11
, pp.
985
992
.
6.
Hayakawa
,
A.
,
Goto
,
T.
,
Mimoto
,
R.
,
Arakawa
,
Y.
,
Kudo
,
T.
, and
Kobayashi
,
H.
,
2015
, “
Laminar Burning Velocity and Markstein Length of Ammonia/Air Premixed Flames at Various Pressures
,”
Fuel
,
159
, pp.
98
106
.10.1016/j.fuel.2015.06.070
7.
Okafor
,
E. C.
,
Naito
,
Y.
,
Colson
,
S.
,
Ichikawa
,
A.
,
Kudo
,
T.
,
Hayakawa
,
A.
, and
Kobayashi
,
H.
,
2018
, “
Experimental and Numerical Study of the Laminar Burning Velocity of CH4–NH3–Air Premixed Flames
,”
Combust. Flame
,
187
, pp.
185
198
.10.1016/j.combustflame.2017.09.002
8.
Ichikawa
,
A.
,
Naito
,
Y.
,
Hayakawa
,
A.
,
Kudo
,
T.
, and
Kobayashi
,
H.
,
2019
, “
Burning Velocity and Flame Structure of CH4/NH3/Air Turbulent Premixed Flames at High Pressure
,”
Int. J. Hydrogen Energy
,
44
(
13
), pp.
6991
6999
.10.1016/j.ijhydene.2019.01.193
9.
Li
,
S.
,
Zhang
,
S.
,
Zhou
,
H.
, and
Ren
,
Z.
,
2019
, “
Analysis of Air-Staged Combustion of NH3/CH4 Mixture With Low NOx Emission at Gas Turbine Conditions in Model Combustors
,”
Fuel
,
237
, pp.
50
59
.10.1016/j.fuel.2018.09.131
10.
Khateeb
,
A. A.
,
Guiberti
,
T. F.
,
Zhu
,
X.
,
Younes
,
M.
,
Jamal
,
A.
, and
Roberts
,
W. L.
,
2020
, “
Stability Limits and Exhaust NO Performances of Ammonia-Methane-Air Swirl Flames
,”
Exp. Therm. Fluid Sci.
,
114
, p.
110058
.10.1016/j.expthermflusci.2020.110058
11.
Zhang
,
M.
,
An
,
Z.
,
Wei
,
X.
,
Wang
,
J.
,
Huang
,
Z.
, and
Tan
,
H.
,
2021
, “
Emission Analysis of the CH4/NH3/Air co-Firing Fuels in a Model Combustor
,”
Fuel
,
291
, p.
120135
.10.1016/j.fuel.2021.120135
12.
Valera-Medina
,
A.
,
Marsh
,
R.
,
Runyon
,
J.
,
Pugh
,
D.
,
Beasley
,
P.
,
Hughes
,
T.
, and
Bowen
,
P.
,
2017
, “
Ammonia–Methane Combustion in Tangential Swirl Burners for Gas Turbine Power Generation
,”
Appl. Energy
,
185
, pp.
1362
1371
.10.1016/j.apenergy.2016.02.073
13.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
,
Gas Turbine Combustion: Alternative Fuels and Emissions
,
CRC Press
, Boca Raton, FL.
14.
Okafor
,
E. C.
,
Somarathne
,
K. K. A.
,
Ratthanan
,
R.
,
Hayakawa
,
A.
,
Kudo
,
T.
,
Kurata
,
O.
,
Iki
,
N.
,
Tsujimura
,
T.
,
Furutani
,
H.
, and
Kobayashi
,
H.
,
2020
, “
Control of NOx and Other Emissions in Micro Gas Turbine Combustors Fuelled With Mixtures of Methane and Ammonia
,”
Combust. Flame
,
211
, pp.
406
416
.10.1016/j.combustflame.2019.10.012
15.
Giglio
,
A. L.
,
2008
, “
Design, Fabrication, and Testing of a Micro Fuel Injection Swirler for Lean Premixed Combustion in Gas Turbine Engines
,”
MS thesis
, Louisiana State University, Baton Rouge, LA.https://digitalcommons.lsu.edu/gradschool_theses/3158
16.
Giglio
,
A. L.
,
Acharya
,
S.
, and
Kelly
,
K.
,
2009
, “
Distributed Micro Fuel Injection for Improved Premixing: Lean Blowout, Emissions, and Dynamics
,”
ASME
Paper No. GT2009-60231.10.1115/GT2009-60231
17.
Mansouri
,
Z.
,
Aouissi
,
M.
, and
Boushaki
,
T.
,
2016
, “
A Numerical Study of Swirl Effects on the Flow and Flame Dynamics in a Lean Premixed Combustor
,”
Int. J. Heat Technol.
,
34
(
2
), pp.
227
235
.10.18280/ijht.340211
18.
He
,
L.
,
Guo
,
Q.
,
Gong
,
Y.
,
Wang
,
F.
, and
Yu
,
G.
,
2019
, “
Investigation of OH* Chemiluminescence and Heat Release in Laminar Methane–Oxygen co-Flow Diffusion Flames
,”
Combust. Flame
,
201
, pp.
12
22
.10.1016/j.combustflame.2018.12.009
19.
Stöhr
,
M.
,
Boxx
,
I.
,
Carter
,
C.
, and
Meier
,
W.
,
2011
, “
Dynamics of Lean Blowout of a Swirl-Stabilized Flame in a Gas Turbine Model Combustor
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
2953
2960
.10.1016/j.proci.2010.06.103
20.
Kee
,
R. J.
,
Miller
,
J. A.
, and
Jefferson
,
T. H.
,
1980
, “
CHEMKIN: A General-Purpose, Problem-Independent, Transportable, FORTRAN Chemical Kinetics Code Package
,” Sandia Labs, Livermore, CA, Report No.
SAND--80-8003
.https://inis.iaea.org/search/search.aspx?orig_q=RN:11548068
21.
Okafor
,
E. C.
,
Naito
,
Y.
,
Colson
,
S.
,
Ichikawa
,
A.
,
Kudo
,
T.
,
Hayakawa
,
A.
, and
Kobayashi
,
H.
,
2019
, “
Measurement and Modelling of the Laminar Burning Velocity of Methane-Ammonia-Air Flames at High Pressures Using a Reduced Reaction Mechanism
,”
Combust. Flame
,
204
, pp.
162
175
.10.1016/j.combustflame.2019.03.008
22.
Law
,
C. K.
,
Makino
,
A.
, and
Lu
,
T.
,
2006
, “
On the Off-Stoichiometric Peaking of Adiabatic Flame Temperature
,”
Combust. Flame
,
145
(
4
), pp.
808
819
.10.1016/j.combustflame.2006.01.009
23.
Lieuwen
,
T.
,
McDonell
,
V.
,
Petersen
,
E.
, and
Santavicca
,
D.
,
2008
, “
Fuel Flexibility Influences on Premixed Combustor Blowout, Flashback, Autoignition, and Stability
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p. 011506.10.1115/1.2771243
24.
Zhang
,
W.
,
Wang
,
J.
,
Lin
,
W.
,
Guo
,
S.
,
Zhang
,
M.
,
Li
,
G.
,
Ye
,
J.
, and
Huang
,
Z.
,
2019
, “
Measurements on Flame Structure of Bluff Body and Swirl Stabilized Premixed Flames Close to Blow-Off
,”
Exp. Therm. Fluid Sci.
,
104
, pp.
15
25
.10.1016/j.expthermflusci.2019.02.010
25.
An
,
Q.
,
Kwong
,
W. Y.
,
Geraedts
,
B. D.
, and
Steinberg
,
A. M.
,
2016
, “
Coupled Dynamics of Lift-Off and Precessing Vortex Core Formation in Swirl Flames
,”
Combust. Flame
,
168
, pp.
228
239
.10.1016/j.combustflame.2016.03.011
26.
Kewlani
,
G.
,
Shanbhogue
,
S.
, and
Ghoniem
,
A.
,
2016
, “
Investigations Into the Impact of the Equivalence Ratio on Turbulent Premixed Combustion Using Particle Image Velocimetry and Large Eddy Simulation Techniques:“V” and “M” Flame Configurations in a Swirl Combustor
,”
Energy Fuels
,
30
(
4
), pp.
3451
3462
.10.1021/acs.energyfuels.5b02921
27.
Zhu
,
X.
,
Khateeb
,
A. A.
,
Guiberti
,
T. F.
, and
Roberts
,
W. L.
,
2021
, “
NO and OH* Emission Characteristics of Very-Lean to Stoichiometric Ammonia–Hydrogen–Air Swirl Flames
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
5155
5162
.10.1016/j.proci.2020.06.275
28.
Khateeb
,
A. A.
,
Guiberti
,
T. F.
,
Wang
,
G.
,
Boyette
,
W. R.
,
Younes
,
M.
,
Jamal
,
A.
, and
Roberts
,
W. L.
,
2021
, “
Stability Limits and NO Emissions of Premixed Swirl Ammonia-Air Flames Enriched With Hydrogen or Methane at Elevated Pressures
,”
Int. J. Hydrogen Energy
,
46
(
21
), pp.
11969
11981
.10.1016/j.ijhydene.2021.01.036
29.
Bompelly
,
R. K.
,
2013
, “
Lean Blowout and Its Robust Sensing in Swirl Combustors
,” Ph.D. thesis,
Georgia Institute of Technology
, Atlanta, GA.
30.
Kathrotia
,
T.
,
Riedel
,
U.
, and
Warnatz
,
J.
,
2009
, “
A Numerical Study on the Relation of OH*, CH*, and C2* Chemiluminescence and Heat Release in Premixed Methane Flames
,”
Proceedings of the European Combustion Meeting
, Vienna, Austria, Apr. 14–17, Vol.
2009
, Paper No. 2.https://elib.dlr.de/59234/
31.
Hardalupas
,
Y.
, and
Orain
,
M.
,
2004
, “
Local Measurements of the Time-Dependent Heat Release Rate and Equivalence Ratio Using Chemiluminescent Emission From a Flame
,”
Combust. Flame
,
139
(
3
), pp.
188
207
.10.1016/j.combustflame.2004.08.003
32.
Dawson
,
J.
,
Gordon
,
R.
,
Kariuki
,
J.
,
Mastorakos
,
E.
,
Masri
,
A.
, and
Juddoo
,
M.
,
2011
, “
Visualization of Blow-Off Events in Bluff-Body Stabilized Turbulent Premixed Flames
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
1559
1566
.10.1016/j.proci.2010.05.044
33.
Gobbato
,
P.
,
Masi
,
M.
,
Cappelletti
,
A.
, and
Antonello
,
M.
,
2017
, “
Effect of the Reynolds Number and the Basic Design Parameters on the Isothermal Flow Field of Low-Swirl Combustors
,”
Exp. Therm. Fluid Sci.
,
84
, pp.
242
250
.10.1016/j.expthermflusci.2017.02.001
34.
Subash
,
A. A.
,
Yu
,
S.
,
Liu
,
X.
,
Bertsch
,
M.
,
Szasz
,
R.-Z.
,
Li
,
Z.
,
Bai
,
X.-S.
,
Aldén
,
M.
, and
Lörstad
,
D.
,
2020
, “
Flame Investigations of a Laboratory-Scale CECOST Swirl Burner at Atmospheric Pressure Conditions
,”
Fuel
,
279
, p.
118421
.10.1016/j.fuel.2020.118421
35.
Chen
,
R.-H.
, and
Driscoll
,
J. F.
,
1989
, “
The Role of the Recirculation Vortex in Improving Fuel-Air Mixing Within Swirling Flames
,”
Symposium (International) on Combustion
, University of Washington, Seattle, WA, Aug. 14–19, Vol.
22
, pp.
531
540
.10.1016/S0082-0784(89)80060-8
36.
Shih
,
W.-P.
,
Lee
,
J. G.
, and
Santavicca
,
D. A.
,
1996
, “
Stability and Emissions Characteristics of a Lean Premixed Gas Turbine Combustor
,”
Symposium (International) on Combustion
, Naples, FL, July 28–Aug. 1, Vol.
26
, pp.
2771
2778
.10.1016/S0082-0784(96)80115-9
37.
Fric
,
T. F.
,
1993
, “
Effects of Fuel-Air Unmixedness on NO (x) Emissions
,”
J. Propul. Power
,
9
(
5
), pp.
708
713
.10.2514/3.23679
38.
Lacarelle
,
A.
,
Moeck
,
J.
,
Konle
,
H.
,
Vey
,
S.
,
Nayeri
,
C.
, and
Paschereit
,
C.
,
2007
, “
Effect of Fuel/Air Mixing on NOx Emissions and Stability in a Gas Premixed Combustion System
,”
AIAA
Paper No. 2007-1417.10.2514/6.2007-1417
39.
Doerr
,
T.
,
Blomeyer
,
M.
, and
Hennecke
,
D.
,
1995
, “
Optimization of Multiple Jets Mixing With a Confined Crossflow
,”
ASME
Paper No. 95-GT-313.10.1115/95-GT-313
40.
Maughan
,
J.
,
Warren
,
R.
,
Tolpadi
,
A.
, and
Roloff
,
T.
,
1992
, “
Effect of Initial Fuel Distribution and Subsequent Mixing on Emissions From Lean, Premixed Flames
,”
ASME
Paper No. 92-GT-121.10.1115/92-GT-121
41.
Estefanos
,
W.
,
Hamza
,
M.
,
Bhayaraju
,
U.
, and
Jeng
,
S.-M.
,
2016
, “
Evaluation of Two Measurement Techniques to Quantify Fuel–Air Mixing of a Gas Turbine Premixer at Atmospheric Conditions
,”
ASME J. Eng. Gas Turbines Power
,
138
(
5
), p. 051501.10.1115/1.4031528
You do not currently have access to this content.