Abstract

Studies have shown that online compressor washing of gas turbine engines slows down the rate of fouling deterioration during operation. However, for most operators, there is a balancing between the performance improvements obtained and the investment (capital and recurring cost). Washing the engine more frequently to keep the capacity high is a consideration. However, this needs to be addressed with expenditure over the life of the washing equipment rather than a simple cost-benefit analysis. The work presented here is a viability study of online compressor washing for 17 gas turbine engines ranging from 5.3 to 307 MW. It considers the nonlinear cost of the washing equipment related to size categories, as well as nonlinear washing liquid consumption related to the variations in engine mass flows. Importantly, the respective electricity break-even selling price of the respective engines was considered. The results show that for the largest engine, the return of investment (RoI) is 520% and the dynamic payback time of 0.19 years when washing every 72 h. When this is less frequent at a 480-h interval, the investment return and payback are 462% and 0.22 years. The optimization study using a multi-objective genetic algorithm shows that the optimal washing is rather a 95-h interval. For the smallest engine, the investment was the least viable for this type of application.

References

1.
Igie
,
U.
,
Pilidis
,
P.
,
Fouflias
,
D.
,
Ramsden
,
K.
, and
Lambart
,
P.
,
2011
, “
On-Line Compressor Cascade Washing for Gas Turbine Performance Investigation
,”
ASME
Paper No. GT2011-46210.10.1115/GT2011-46210
2.
Fouflias
,
D.
,
Gannan
,
A.
,
Ramsden
,
K.
,
Pilidis
,
P.
,
Mba
,
D.
,
Teixeira
,
J.
,
Igie
,
U.
, and
Lambart
,
P.
,
2010
, “
Experimental Investigation of the Influence of Fouling on Compressor Cascade Characteristics and Implications for Gas Turbine Engine Performance
,”
Proc. Inst. Mech. Eng., Part A
,
224
(
7
), pp.
1007
1018
.10.1243/09576509JPE992
3.
Igie
,
U.
,
Pilidis
,
P.
,
Fouflias
,
D.
,
Ramsden
,
K.
, and
Laskaridis
,
P.
,
2014
, “
Industrial Gas Turbine Performance: Compressor Fouling and on-Line Washing
,”
ASME J. Turbomach.
,
136
(
10
), pp.
101001
.10.1115/1.4027747
4.
Boyce
,
M.
, and
Gonzalez
,
F.
,
2007
, “
A Study of on-Line and Off-Line Turbine Washing to Optimize the Operation of a Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
129
(
1
), pp.
114
122
.10.1115/1.2181180
5.
Syverud
,
E.
, and
Bakken
,
L.
,
2007
, “
Online Water Wash Tests of GE J85-13
,”
ASME J. Turbomach.
,
129
(
1
), pp.
136
142
.10.1115/1.2372768
6.
Igie
,
U.
,
Diez-Gonzalez
,
P.
,
Giraud
,
A.
, and
Minervino
,
O.
,
2016
, “
Evaluating Gas Turbine Performance Using Machine-Generated Data: Quantifying Degradation and Impacts of Compressor Washing
,”
ASME J. Eng. Gas Turbines Power
,
138
(
12
), pp.
122601
.10.1115/1.4033748
7.
Stalder
,
J.
,
2001
, “
Gas Turbine Compressor Washing State of the Art: Field Experiences1
,”
ASME J. Eng. Gas Turbines Power
,
123
(
2
), pp.
363
370
.10.1115/1.1361108
8.
Schneider
,
E.
,
Demircioglu Bussjaeger
,
S.
,
Franco
,
S.
, and
Therkorn
,
D.
,
2010
, “
Analysis of Compressor on-Line Washing to Optimize Gas Turbine Power Plant Performance
,”
ASME J. Eng. Gas Turbines Power
,
132
(
6
), p.
0620017
.10.1115/1.4000133
9.
Igie
,
U.
,
2017
, “
Gas Turbine Compressor Fouling and Washing in Power and Aerospace Propulsion
,”
ASME J. Eng. Gas Turbines Power
,
139
(
12
), p. 122602.10.1115/1.4037453
10.
Gera
,
M.
,
2010
, “Advanced Compressor Cleaning System for Siemens Gas Turbines,” Siemens AG, Munich, Germany, accessed Oct. 5, 2021, https://assets.siemens-energy.com/siemens/assets/api/uuid:31c2d70e-a260-4e0c-9b53-69a9fe7d0c85/accspro_e50001-g520-a393-x-4a00enlrfinal.pdf
11.
GTE,
2021
, “
Turbine - Compressor Water Wash and Cleaning Systems
,” GTE, Orlando, FL, accessed Oct. 5, 2021, http://www.gtefficiency.com/products/turbine-compressor-water-wash-and-cleaning-systems/
12.
Leusden
,
C.
,
Sorgenfrey
,
C.
, and
Dümmel
,
L.
,
2004
, “
Performance Benefits Using Siemens Advanced Compressor Cleaning System
,”
ASME J. Eng. Gas Turbines Power
,
126
(
4
), pp.
763
769
.10.1115/1.1787512
13.
Silva
,
P.
,
Campanari
,
S.
, and
Macchi
,
E.
, “
Optimization of Operating Conditions and Compressor Cleaning Time Intervals of Combined Cycles in a Liberalized Market
,”
ASME
Paper No. GT2003-38455.10.1115/GT2003-38455
14.
Aretakis
,
N.
,
Roumeliotis
,
I.
,
Doumouras
,
G.
, and
Mathioudakis
,
K.
,
2012
, “
Compressor Washing Economic Analysis and Optimization for Power Generation
,”
Appl. Energy
,
95
, pp.
77
86
.10.1016/j.apenergy.2012.02.016
15.
Di Lorenzo
,
G.
,
Pilidis
,
P.
,
Witton
,
J.
, and
Probert
,
D.
,
2012
, “
Monte Carlo Simulation of Investment Integrity and Value for Power-Plants With Carbon-Capture
,”
Appl. Energy
,
98
, pp.
467
478
.10.1016/j.apenergy.2012.04.010
16.
Di Lorenzo
,
G.
,
Pilidis
,
P.
,
Witton
,
J.
, and
Probert
,
D.
,
2012
, “
A Framework for the Evaluation of Investments in Clean Power-Technologies
,”
Comput. Aided Chem. Eng.
,
30
, pp.
492
496
.10.1016/B978-0-444-59519-5.50099-X
17.
Diakunchak
,
I.
,
1992
, “
Performance Deterioration in Industrial Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
114
(
2
), pp.
161
168
.10.1115/1.2906565
18.
Sánchez
,
D.
,
Chacartegui
,
R.
,
Becerra
,
J.
, and
Sánchez
,
T.
,
2009
, “
Determining Compressor Wash Programmes for Fouled Gas Turbines
,”
Proc. Inst. Mech. Eng., Part A
,
223
(
4
), pp.
467
476
.10.1243/09576509JPE723
19.
Musa
,
G.
,
Alrashed
,
M.
, and
Muhammad
,
N.
,
2021
, “
Development of Big Data Lean Optimisation Using Different Control Mode for Gas Turbine Engine Health Monitoring
,”
Energy Rep.
,
7
, pp.
4872
4881
.10.1016/j.egyr.2021.07.071
20.
GTW,
1990
, “
Gas Turbine World Performance Specification
,”
GTW
, Southport, CT.
21.
GTW,
2014
, “
Gas Turbine World Performance Specification
,”
GTW
, Southport, CT.
22.
GTW,
1992
, “
Gas Turbine World Performance Specification
,”
GTW
, Southport, CT.
23.
Musa
,
G. H.
,
2019
, “Techno-Economic Analysis of Gas Turbine Compressor Fouling and Washing,” Ph.D. thesis, School of Aerosapce, Transport and Manufacturing,
Cranfield University
, Cranfield, UK.
24.
Berrie
,
T. W.
,
1993
,
Electricity Economics and Planning
,
The Institution of Engineering and Technology
,
London, UK
.
25.
GTW,
2015
, “
Gas Turbine World Performance Specification
,”
GTW
, Southport, CT.
26.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.10.1109/4235.996017
27.
Goldberg
,
D. E.
,
1989
, “
Genetic Algorithms in Search, Optimization, and Machine Learning
,” Addison-Wesley, Reading, MA
.http://www2.fiit.stuba.sk/~kvasnicka/Free%20books/Goldberg_Genetic_Algorithms_in_Search.pdf
28.
Goldberg
,
D. E.
,
1989
, “
Sizing Populations for Serial and Parallel Genetic Algorithms
,”
Proceedings of the Third International Conference on Genetic Algorithms
,
Morgan Kaufmann Publishers
,
San Mateo, CA
, June 4–7, pp.
70
79
.https://dl.acm.org/doi/10.5555/93126.93150
29.
Srinivas
,
N.
, and
Deb
,
K.
,
1994
, “
Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms
,”
Evol. Comput.
,
2
(
3
), pp.
221
248
.10.1162/evco.1994.2.3.221
You do not currently have access to this content.