Abstract

This study is based on time-series data taken from the combined cycle heavy-duty utility gas turbines. For analysis, first a multistage vector autoregressive model is constructed for the nominal operation of the powerplant assuming sparsity in the association among variables and this is used as a basis for anomaly detection and prediction. This prediction is compared with the time-series data of the plant-operation containing anomalies. The comparative advantage based on prediction accuracy and applicability of the algorithms is discussed for the postprocessing. Next, the long-memory behavior of residuals is modeled, and heterogeneous variances are observed from the residuals of the generalized additive model. Autoregressive fractionally integrated moving average (ARFIMA) and generalized autoregressive conditional heteroskedasticity (GARCH) models are employed to fit the residual process, which significantly improve the prediction. Rolling one-step-ahead forecast is studied. Numerical experiments of abrupt changes and trend in the blade-path temperature are performed to evaluate the specificity and sensitivity of the prediction. The prediction is sensitive given reasonable signal-to-noise ratio and has lower false positive rate. The control chart is able to detect the simulated abrupt jump quickly.

References

1.
EIA
,
2021
, “
Annual Energy Outlook 2021
,” Department of Energy, U.S. Energy Information Administration, U.S. Department of Energy, Washington, DC, Technical Report No.
AEO2021 Narrative
.https://www.eia.gov/outlooks/aeo/tables_side.php
2.
EIA
,
2021
, “
International Energy Outlook 2021
,” Department of Energy, U.S. Energy Information Administration, Washington, DC, Technical Report No.
IEO2021
.https://www.eia.gov/outlooks/ieo/
3.
Kumar
,
N.
,
Besuner
,
P.
,
Lefton
,
S.
,
Agan
,
D.
, and
Hilleman
,
D.
,
2012
, “
Power Plant Cycling Costs
,” Intertek APTECH, NREL, Technical Report No.
NREL/SR-5500-55433
.https://www.nrel.gov/docs/fy12osti/55433.pdf
4.
EIA
,
2020
, “
Capital Cost and Performance Characteristic Estimates for Utility Scale Electric Power Generating Technologies
,” U.S. Energy Information Administration, U.S. Department of Energy, Washington, DC, Technical Report No.
13651.005
.https://www.eia.gov/analysis/studies/powerplants/capitalcost/
5.
Gulen
,
S. C.
,
2020
,
Gas Turbine Combined Cycle Power Plants
,
CRC Press
, Boca Raton, FL.10.1201/9780429244360
6.
Zhao
,
N.
,
Wen
,
X.
, and
Li
,
S.
,
2016
, “
A Review on Gas Turbine Anomaly Detection for Implementing Health Management
,”
ASME
Paper No. GT2016-58135.10.1115/GT2016-58135
7.
Urban
,
L. A.
,
1972
, “
Gas Path Analysis Applied to Turbine Engine Condition Monitoring
,”
J. Aircr.
,
10
(
7
), pp.
400
406
.10.2514/3.60240
8.
Marinai
,
L.
,
2004
, “
Gas-Path Diagnostics and Prognostics for Aero-Engines Using Fuzzy Logic and Time Series Analysis
,”
Ph.D. thesis
,
Cranfield University
,
Cranfield, UK
.http://dspace.lib.cranfield.ac.uk/handle/1826/6730
9.
Tahan
,
M.
,
Tsoutsanis
,
E.
,
Muhammad
,
M.
, and
Karim
,
Z. A. A.
,
2017
, “
Performance-Based Health Monitoring, Diagnostics and Prognostics for Condition-Based Maintenance of Gas Turbines: A Review
,”
Appl. Energy
,
198
, pp.
122
144
.10.1016/j.apenergy.2017.04.048
10.
Volponi
,
A. J.
,
2014
, “
Gas Turbine Engine Health Management: Past, Present, and Future Trends
,”
ASME J. Eng. Gas Turbines Power
,
136
(
5
), p.
051201
.10.1115/1.4026126
11.
Hipple
,
S. M.
,
Bonilla-Alvarado
,
H.
,
Pezzini
,
P.
,
Shadle
,
L.
, and
Bryden
,
K. M.
,
2020
, “
Using Machine Learning Tools to Predict Compressor Stall
,”
ASME J. Energy Resour. Technol.
,
142
(
7
), p.
070915
.10.1115/1.4046458
12.
Dragomir
,
O. E.
,
Gouriveau
,
R.
,
Dragomir
,
F.
,
Minca
,
E.
, and
Zerhouni
,
N.
,
2009
, “
Review of Prognostic Problem in Condition-Based Maintenance
,” Proceedings of the European Control Conference (
ECC
), Budapest, Hungary, Aug. 23–26, pp.
1587
1592
.10.23919/ECC.2009.7074633
13.
Liu
,
J.
,
Huang
,
Q.
,
Ulishney
,
C.
, and
Dumitrescu
,
C. E.
,
2022
, “
Comparison of Random Forest and Neural Network in Modeling the Performance and Emissions of a Natural Gas Spark Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
144
(
3
), p.
032310
.10.1115/1.4053301
14.
Li
,
Y. G.
,
2002
, “
Performance-Analysis-Based Gas Turbine Diagnostics: A Review
,”
Proc. Inst. Mech. Eng., Part A
,
216
(
5
), pp.
363
377
.10.1243/095765002320877856
15.
Yang
,
F.
,
Cho
,
H.
, and
Zhang
,
H.
,
2019
, “
Performance Prediction and Optimization of an Organic Rankine Cycle Using Back Propagation Neural Network for Diesel Engine Waste Heat Recovery
,”
ASME J. Energy Resour. Technol.
,
141
(
6
), p.
062006
.10.1115/1.4042408
16.
Castro-Cros
,
M. D.
,
Velasco
,
M.
, and
Angulo
,
C.
,
2021
, “
Machine-Learning-Based Condition Assessment of Gas Turbines—A Review
,”
Energies
,
14
(
24
), p.
8468
.10.3390/en14248468
17.
Bai
,
M.
,
Liu
,
J.
,
Chai
,
J.
,
Zhao
,
X.
, and
Yu
,
D.
,
2020
, “
Anomaly Detection of Gas Turbines Based on Normal Pattern Extraction
,”
Appl. Therm. Eng.
,
166
, p.
114664
.10.1016/j.applthermaleng.2019.114664
18.
Bettocchi
,
R.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Venturini
,
M.
,
2007
, “
Artificial Intelligence for the Diagnostics of Gas Turbines—Part I: Neural Network Approach
,”
ASME J. Eng. Gas Turbines Power
,
129
(
3
), pp.
711
719
.10.1115/1.2431391
19.
Loboda
,
I.
,
2010
,
Gas Turbine Condition Monitoring and Diagnostics
,
IntechOpen
, Mexico.
20.
Romesis
,
C.
,
2013
, “
Condition-Based Maintenance for Gas Turbine Plants
,” Laboratory of Thermal Turbomachines, National Technical University of Athens, Athens, Greece.https://www.semanticscholar.org/paper/CONDITION-BASED-MAINTENANCE-FOR-GAS-TURBINES-PLANTS-Romesis/90fb311a711721a6189f9ed2e88ca349b9fa11d8
21.
Lee
,
J.
,
Wu
,
F.
,
Zhao
,
W.
,
Ghaffari
,
M.
,
Liao
,
L.
, and
Siegel
,
D.
,
2014
, “
Prognostics and Health Management Design for Rotary Machinery Systems—Reviews, Methodology and Applications
,”
Mech. Syst. Signal Process.
,
42
(
1–2
), pp.
314
334
.10.1016/j.ymssp.2013.06.004
22.
Fentaye
,
A.
,
Baheta
,
A.
,
Gilani
,
S.
, and
Kyprianidis
,
K.
,
2019
, “
A Review on Gas Turbine Gas-Path Diagnostics: State-of-the-Art Methods, Challenges and Opportunities
,”
Aerospace
,
6
(
7
), p.
83
.10.3390/aerospace6070083
23.
Gascon
,
M.
,
Kumar
,
N.
, and
Ghosh
,
R.
,
2020
, “
Predicting Power Plant Equipment Life Using Machine Learning
,”
ASME J. Energy Resour. Technol.
,
142
(
7
), p.
070908
.10.1115/1.4044939
24.
Petro
,
N.
, and
Lopez
,
F.
,
2022
, “
Machine Learning-Based Digital Twins Reduce Seasonal Remapping in Aeroderivative Gas Turbines
,”
ASME J. Energy Resour. Technol.
,
144
(
3
), p.
032105
.10.1115/1.4052994
25.
Cory
,
J.
,
Beachkofski
,
B.
, and
Cross
,
C.
,
2007
, “
Autoregression-Based Turbine Engine Anomaly Detection
,”
AIAA
Paper No. 2007-5107.10.2514/6.2007-5107
26.
Melnyk
,
I.
,
Matthews
,
B.
,
Valizadegan
,
H.
,
Banerjee
,
A.
, and
Oza
,
N.
,
2016
, “
Vector Autoregressive Modelbased Anomaly Detection in Aviation Systems
,”
J. Aerosp. Inf. Syst.
,
13
(
4
), pp.
161
173
.10.2514/1.I010394
27.
Kumar
,
A.
,
Srivastava
,
A.
,
Goel
,
N.
, and
McMaster
,
J.
,
2015
, “
Exhaust Gas Temperature Data Prediction by Autoregressive Models
,” Proceedings of the 2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering (
CCECE
), Halifax, NS, Canada, May 3–6, pp.
976
981
.10.1109/CCECE.2015.7129408
28.
Atasoy
,
V. E.
,
Suzer
,
A. E.
, and
Ekici
,
S.
,
2022
, “
A Comparative Analysis of Exhaust Gas Temperature Based on Machine Learning Models for Aviation Applications
,”
ASME J. Energy Resour. Technol.
,
144
(
8
), p.
082101
.10.1115/1.4052771
29.
Liu
,
Z.
, and
Karimi
,
I. A.
,
2020
, “
Gas Turbine Performance Prediction Via Machine Learning
,”
Energy
,
192
, p.
116627
.10.1016/j.energy.2019.116627
30.
Yu
,
B.
,
Kim
,
D.
,
Cho
,
H.
, and
Mago
,
P.
,
2020
, “
A Nonlinear Autoregressive With Exogenous Inputs Artificial Neural Network Model for Building Thermal Load Prediction
,”
ASME J. Energy Resour. Technol.
,
142
(
5
), p.
050902
.10.1115/1.4045543
31.
Park
,
Y.
,
Choi
,
M.
, and
Choi
,
G.
,
2022
, “
Fault Detection of Industrial Large-Scale Gas Turbine for Fuel Distribution Characteristics in Start-Up Procedure Using Artificial Neural Network Method
,”
Energy
,
251
, p.
123877
.10.1016/j.energy.2022.123877
32.
Goyal
,
V.
,
Xu
,
M.
,
Kapat
,
J.
, and
Vesely
,
L.
,
2020
, “
Prediction of Gas Turbine Performance Using Machine Learning Methods
,”
ASME
Paper No. GT2020-15232.10.1115/GT2020-15232
33.
Vesely
,
L.
,
Fernandez
,
E.
,
Kapat
,
J.
,
Ghouse
,
J. H.
,
Bhattacharyya
,
D.
,
Ruscher
,
C. J.
, and
Rolling
,
A. J.
,
2022
, “
Fault Management Architecture Based on a Digital Twin Approach
,”
ASME J. Energy Resour. Technol.
,
144
(
3
), p.
032106
.10.1115/1.4053134
34.
Sleiti
,
A. K.
,
Al-Ammari
,
W. A.
,
Vesely
,
L.
, and
Kapat
,
J. S.
,
2022
, “
Carbon Dioxide Transport Pipeline Systems: Overview of Technical Characteristics, Safety, Integrity and Cost, and Potential Application of Digital Twin
,”
ASME J. Energy Resour. Technol.
,
144
(
9
), p.
092106
.10.1115/1.4053348
35.
Lutkepohl
,
H.
,
2005
,
New Introduction to Multiple Time Series Analysis
,
Springer Science and Business Media
, Springer Berlin, Heidelberg.
36.
Engle
,
R. F.
,
1982
, “
Autoregressive Conditional Heteroscedasticity With Estimates of the Variance of United Kingdom Inflation
,”
Econometrica
,
50
(
4
), pp.
987
1007
.10.2307/1912773
37.
Bollerslev
,
T.
,
1986
, “
Generalized Autoregressive Conditional Heteroskedasticity
,”
J. Econometrics
,
31
(
3
), pp.
307
327
.10.1016/0304-4076(86)90063-1
38.
Granger
,
C. W.
, and
Joyeux
,
R.
,
1980
, “
An Introduction to Long-Memory Time Series Models and Fractional Differencing
,”
J. Time Ser. Anal.
,
1
(
1
), pp.
15
29
.10.1111/j.1467-9892.1980.tb00297.x
39.
Hosking
,
J. R. M.
,
1981
, “
Fractional Differencing
,”
Biometrika
,
68
(
1
), pp.
165
176
.10.1093/biomet/68.1.165
40.
Wood
,
S. N.
,
2011
, “
Fast Stable Restricted Maximum Likelihood and Marginal Likelihood Estimation of Semiparametric Generalized Linear Models
,”
J. R. Stat. Soc.: Ser. B (Stat. Methodol.)
,
73
(
1
), pp.
3
36
.10.1111/j.1467-9868.2010.00749.x
41.
Ghalanos
,
A.
,
2020
, “
Rugarch: Univariate GARCH Models R Package Version 1.4-4
,” online.
42.
JinFu
,
L.
,
LinHai
,
Z.
,
YuJia
,
M.
,
Jiao
,
L.
,
WeiXing
,
Z.
, and
DaRen
,
Y.
,
2018
, “
Anomaly Detection of Hot Components in Gas Turbine Based on Frequent Pattern Extraction
,”
Sci. China: Technol. Sci.
,
61
(
4
), pp.
567
586
.10.1007/s11431-017-9165-7
43.
Kiakojoori
,
S.
, and
Khorasani
,
K.
,
2016
, “
Dynamic Neural Networks for Gas Turbine Engine Degradation Prediction, Health Monitoring and Prognosis
,”
Neural Comput. Appl.
,
27
(
8
), pp.
2157
2192
.10.1007/s00521-015-1990-0
44.
Olsson
,
T.
,
Ramentol
,
E.
,
Rahman
,
M.
,
Oostveen
,
M.
, and
Kyprianidis
,
K.
,
2021
, “
A Data-Driven Approach for Predicting Long-Term Degradation of a Fleet of Micro Gas Turbines
,”
Energy AI
,
4
, p.
100064
.10.1016/j.egyai.2021.100064
45.
Tufekci
,
P.
,
2014
, “
Prediction of Full Load Electrical Power Output of a Base Load Operated Combined Cycle Power Plant Using Machine Learning Methods
,”
Int. J. Electr. Power Energy Syst.
,
60
, pp.
126
140
.10.1016/j.ijepes.2014.02.027
46.
Amirkhani
,
S.
,
Chaibakhsh
,
A.
, and
Ghaffari
,
A.
,
2020
, “
Nonlinear Robust Fault Diagnosis of Power Plant Gas Turbine Using Monte Carlo-Based Adaptive Threshold Approach
,”
ISA Trans.
,
100
, pp.
171
184
.10.1016/j.isatra.2019.11.035
You do not currently have access to this content.