Abstract

A key requirement to achieve sustainable high-speed flight and efficiency improvements in space access lies in the advanced performance of future propulsive architectures. Such concepts often feature high-speed nozzles, similar to rocket engines, but employ different configurations tailored to their mission. Additionally, they exhibit complex interaction phenomena between high-speed and separated flow regions at the base, which are not yet well understood. This paper presents a numerical investigation on the aerodynamic performance of a representative, novel exhaust system, which employs a high-speed nozzle and a complex-shaped cavity region at the base. Reynolds-Averaged Navier–Stokes computations are performed for a number of nozzle pressure ratios (NPRs) and freestream Mach numbers in the range of 2.7 < NPR < 24 and 0.7 < M < 1.2, respectively. The corresponding Reynolds number lies within the range of 1.06 × 106 < Red < 1.28 × 106 based on the maximum diameter of the configuration. The impact of the cavity is revealed by direct comparison to an identical noncavity configuration. Results show a consistent trend of increasing base drag with increasing NPR for both configurations, owing to the jet entrainment effect. Cavity is found to have no impact on the incipient separation location of the nozzle flow. At conditions of M = 1.2 and high NPRs, the cavity has a significant effect on the aerodynamic performance, transitioning nozzle operation to underexpanded conditions. This results in approximately 12% higher drag coefficient compared to the noncavity case and shifts the minimum NPR required for positive gross propulsive force to higher values.

References

1.
McClinton
,
C. R.
,
2007
, “
High Speed/Hypersonic Aircraft Propulsion Technology Development
,”
Advances on Propulsion Technology for High-Speed Aircraft
, NATO RTO, Neuilly-sur-Seine, France, Mar. 12–15, Vol.
1
, pp.
1
32
.https://www.sto.nato.int/publications/STO%20Educational%20Notes/RTO-EN-AVT-150/EN-AVT-150-01.pdf
2.
Sziroczak
,
D.
, and
Smith
,
H.
,
2016
, “
A Review of Design Issues Specific to Hypersonic Flight Vehicles
,”
Prog. Aerosp. Sci.
,
84
, pp.
1
28
.10.1016/j.paerosci.2016.04.001
3.
Varvill
,
R.
, and
Bond
,
A.
,
2003
, “
A Comparison of Propulsion Concepts for SSTO Reusable Launchers
,”
J. Br. Interplanet. Soc.
,
56
, pp.
108
117
.https://ui.adsabs.harvard.edu/abs/2003JBIS...56..108V/abstract
4.
Ingenito
,
A.
,
2021
,
Subsonic Combustion Ramjet Design
,
Springer Nature
,
Switzerland
.
5.
Murthy
,
S.
, and
Curran
,
E.
,
2001
,
Scramjet Propulsion
,
AIAA
, Reston, VA.
6.
Bogar
,
T.
,
Eiswirth
,
E.
,
Couch
,
L.
,
Hunt
,
J.
, and
McClinton
,
C.
,
1996
, “
Conceptual Design of a Mach 10, Global Reach Reconnaissance Aircraft
,”
32nd Joint Propulsion Conference and Exhibit
, Lake Buena Vista, FL, July 1–3, pp.
1
10
.10.2514/6.1996-2894
7.
Daines
,
R.
, and
Segal
,
C.
,
1998
, “
Combined Rocket and Airbreathing Propulsion Systems for Space-Launch Applications
,”
J. Propul. Power
,
14
(
5
), pp.
605
612
.10.2514/2.5352
8.
Dai
,
J.
, and
Zuo
,
Q.
,
2020
, “
Key Technologies for Thermodynamic Cycle of Precooled Engines: A Review
,”
Acta Astronaut.
,
177
, pp.
299
312
.10.1016/j.actaastro.2020.07.039
9.
Tsentis
,
S.
,
Gkoutzamanis
,
V.
,
Gaitanis
,
A.
, and
Kalfas
,
I.
,
2021
, “
Multi-Platform App-Embedded Model for Hybrid Air-Breathing Rocket-Cycle Engine in Hypersonic Atmospheric Ascent
,”
Aeronaut. J.
,
125
(
1291
), pp.
1631
1653
.10.1017/aer.2021.3
10.
Zhang
,
J.
,
Wang
,
Z.
, and
Li
,
Q.
,
2017
, “
Thermodynamic Efficiency Analysis and Cycle Optimization of Deeply Precooled Combined Cycle Engine in the Air-Breathing Mode
,”
Acta Astronaut.
,
138
, pp.
394
406
.10.1016/j.actaastro.2017.06.011
11.
Villace
,
V. F.
, and
Paniagua
,
G.
,
2010
, “
Simulation of a Combined Cycle for High Speed Propulsion
,”
AIAA
Paper No. AIAA 2010-1125. 10.2514/6.2010-1125
12.
Jivraj
,
F.
,
Varvill
,
R.
,
Bond
,
A.
, and
Paniagua
,
G.
,
2007
, “
The Scimitar Precooled Mach 5 Engine
,”
2nd European Conference for Aerospace Sciences, No. EUCASS
, Brussels, Belgium, July 2–6, pp.
1
10
.https://www.eucass.eu/index.php/component/docindexer/?task=download&id=2732
13.
Gross
,
A.
, and
Weiland
,
C.
,
2004
, “
Numerical Simulation of Separated Cold Gas Nozzle Flow
,”
J. Propul. Power
,
20
(
3
), pp.
509
519
.10.2514/1.2714
14.
Stark
,
R.
,
2005
, “
Flow Separation in Rocket Nozzles, a Simple Criteria
,”
AIAA
Paper No. 2005-3940.10.1115/2005-3940
15.
Zucrow
,
M. J.
, and
Hoffman
,
J. D.
,
1976
,
Gas Dynamics
,
Wiley
,
New York
.
16.
Frey
,
M.
, and
Hagemann
,
G.
,
1999
, “
Flow Separation and Side-Loads in Rocket Nozzles
,”
35th Joint Propulsion Conference & Exhibit
, Los Angeles, CA, June 20–24, pp.
1
11
.10.2514/6.1999-2815
17.
Nasuti
,
F.
, and
Onofri
,
M.
,
2009
, “
Shock Structure in Separated Nozzle Flows
,”
Shock Waves
,
19
(
3
), pp.
229
237
.10.1007/s00193-008-0173-7
18.
Rao
,
G. V. R.
,
1958
, “
Exhaust Nozzle Contour for Optimum Thrust
,”
J. Jet Propul.
,
28
(
6
), pp.
377
382
.10.2514/8.7324
19.
Rao
,
G. V. R.
, and
Dang
,
A. L.
,
1960
, “
Approximation of Optimum Thrust Nozzle Contour
,”
ARS J.
,
30
(
6
), p.
561
.
20.
Shimizu
,
T.
,
Miyajima
,
H.
, and
Kodera
,
M.
,
2006
, “
Numerical Study of Restricted Shock Separation in a Compressed Truncated Perfect Nozzle
,”
AIAA J.
,
44
(
3
), pp.
576
584
.10.2514/1.14288
21.
Hadjadj
,
A.
, and
Onofri
,
M.
,
2009
, “
Nozzle Flow Separation
,”
Shock Waves
,
19
(
3
), pp.
163
169
.10.1007/s00193-009-0209-7
22.
Summerfield
,
M.
,
Foster
,
C.
, and
Swan
,
W.
,
1954
, “
Flow Separation in Overexpanded Supersonic Exhaust Nozzles
,”
Jet Propul.
,
24
(
9
), pp.
319
321
.
23.
Schmucker
,
R.
,
1973
, “
Flow Processes in Overexpanding Nozzles of Chemical Rocket Engines
,”
Technical University Munich
,
Munich, Germany
, Report No. TB,-10,-14.
24.
Stark
,
R.
,
2013
, “
Flow Separation in Rocket Nozzles - An Overview
,”
AIAA
Paper No. AIAA 2013-3840.10.2514/6.2013-3840
25.
Scharnowski
,
S.
, and
Kahler
,
C.
,
2021
, “
Investigation of the Base Flow of a Generic Space Launcher With Dual-Bell Nozzle
,”
CEAS Space J.
,
13
(
2
), pp.
197
216
.10.1007/s12567-020-00333-5
26.
Mariotti
,
A.
, and
Buresti
,
G.
,
2013
, “
Experimental Investigation on the Influence of Boundary Layer Thickness on the Base Pressure and Near-Wake Flow Features of an Axisymmetric Blunt-Based Body
,”
Exp. Fluids
,
54
(
11
), pp.
1
13
.10.1007/s00348-013-1612-5
27.
Mariotti
,
A.
,
Buresti
,
G.
, and
Salvetti
,
M. V.
,
2015
, “
Connection Between Base Drag, Separating Boundary Layer Characteristics and Wake Mean Recirculation Length of an Axisymmetric Blunt-Based Body
,”
J. Fluids Struct.
,
55
, pp.
191
203
.10.1016/j.jfluidstructs.2015.02.012
28.
Tran
,
T. H.
,
Dinh
,
H. Q.
,
Chu
,
H. Q.
,
Duong
,
V. Q.
,
Pham
,
C.
, and
Do
,
V. M.
,
2021
, “
Effect of Boattail Angle on Near-Wake Flow and Drag of Axisymmetric Models: A Numerical Approach
,”
J. Mech. Sci. Technol.
,
35
(
2
), pp.
563
573
.10.1007/s12206-021-0115-1
29.
Paciorri
,
R.
,
Sabetta
,
F.
,
Valenza
,
F.
,
Fauci
,
R.
,
Passaro
,
A.
, and
Baccarella
,
D.
,
2013
, “
Base-Pressure Experimental Investigation on a Space Launcher in Subsonic Regime
,”
J. Spacecr. Rockets
,
50
(
3
), pp.
572
578
.10.2514/1.A32283
30.
Depres
,
D.
,
Reijasse
,
P.
, and
Dussauge
,
J. P.
,
2004
, “
Analysis of Unsteadiness in Afterbody Transonic Flows
,”
AIAA J.
,
42
(
12
), pp.
2541
2550
.10.2514/1.7000
31.
Weiss
,
E. P.
,
Deck
,
S.
,
Robinet
,
J. C.
, and
Sagaut
,
P.
,
2009
, “
On the Dynamics of Axisymmetric Turbulent Separating/Reattaching Flows
,”
Phys. Fluids
,
21
(
7
), pp. 1–8.10.1063/1.3177352
32.
Saile
,
D.
,
Kuhl
,
V.
, and
Gulhan
,
A.
,
2019
, “
On the Subsonic Near-Wake of a Space Launcher Configuration With Exhaust Jet
,”
Exp. Fluids
,
60
(
11
), p.
165
.10.1007/s00348-019-2801-7
33.
Saile
,
D.
,
Kuhl
,
V.
, and
Gulhan
,
A.
,
2021
, “
On Subsonic Near-Wake Flows of a Space Launcher Configuration With Various Base Geometries
,”
Exp. Fluids
,
62
(
6
), p.
122
.10.1007/s00348-021-03149-z
34.
Statnikov
,
V.
,
Sayadi
,
T.
,
Meinke
,
M.
,
Schmid
,
P.
, and
Schroder
,
W.
,
2015
, “
Analysis of Pressure Perturbation Sources on a Generic Space Launcher After-Body in Supersonic Flow Using Zonal Turbulence Modeling and Dynamic Mode Decomposition
,”
Phys. Fluids
,
27
(
1
), pp. 1–21.10.1063/1.4906219
35.
Meliga
,
P.
, and
Reijasse
,
P.
,
2012
, “
Unsteady Transonic Flow Behind an Axisymmetric Afterbody Equipped With Two Boosters
,”
AIAA
Paper No. 2007-4564. 10.2514/6.2007-4564
36.
Schwane
,
R.
,
2015
, “
Numerical Prediction and Experimental Validation of Unsteady Loads on ARIANE5 and VEGA
,”
J. Spacecr. Rockets
,
52
(
1
), pp.
54
62
.10.2514/1.A32793
37.
Hammond
,
W. E.
,
2001
,
Design Methodologies for Space Transportation Systems
,
AIAA
, Reston,
VA
.
38.
Roberts
,
B. B.
,
Wallace
,
R. O.
, and
Sims
,
J. L.
,
1983
, “
Plume Base Flow Simulation Technology
,”
Shuttle Performance
: Lessons Learned, Part I, NASA Langley Research Center, Hampton, VA, Mar. 8–10, pp.
1
18
.https://ntrs.nasa.gov/citations/19840002049
39.
Viswanath
,
P. R.
,
1996
, “
Flow Management Techniques for Base and Afterbody Drag Reduction
,”
Prog. Aerosp. Sci.
,
32
(
2–3
), pp.
79
129
.10.1016/0376-0421(95)00003-8
40.
Viswanath
,
P. R.
, and
Patil
,
S. R.
,
1990
, “
Effectiveness of Passive Devices for Axisymmetric Base Drag Reduction at Mach 2
,”
J. Spacecr. Rockets
,
27
(
3
), pp.
234
237
.10.2514/3.26130
41.
Tanner
,
M.
,
1975
, “
Reduction of Base Drag
,”
Prog. Aerosp. Sci.
,
16
(
4
), pp.
369
384
.10.1016/0376-0421(75)90003-2
42.
Whitmore
,
S. A.
, and
Naughton
,
J. W.
,
2002
, “
Drag Reduction on Blunt-Based Vehicles Using Forebody Surface Roughness
,”
J. Spacecr. Rockets
,
39
(
4
), pp.
596
604
.10.2514/2.3849
43.
Durgesh
,
V.
,
Naughton
,
J. W.
, and
Whitmore
,
S. A.
,
2013
, “
Experimental Investigation of Base-Drag Reduction Via Boundary-Layer Modification
,”
AIAA J.
,
51
(
2
), pp.
416
425
.10.2514/1.J051825
44.
Morel
,
T.
,
1979
, “
Effect of Base Cavities on the Aerodynamic Drag of an Axisymmetric Cylinder
,”
Aeronaut. Q.
,
30
(
2
), pp.
400
412
.10.1017/S0001925900008611
45.
Tripathi
,
A.
,
Manisankar
,
C.
, and
Verma
,
S. B.
,
2015
, “
Control of Base Pressure for a Boat-Tailed Axisymmetric Afterbody Via Base Geometry Modifications
,”
Aerosp. Sci. Technol.
,
45
, pp.
284
293
.10.1016/j.ast.2015.05.021
46.
Sauer
,
R.
,
1947
,
General Characteristics of the Flow Through Nozzles at Near Critical Speeds
(Memorandum No. 1147),
NACA
,
Washington, DC
.
47.
MIDAP, Study Group
.
1979
, “
Guide to in-Flight Thrust Measurement of Turbojets and Fan Engines
,” AGARDograph No. 237, Advisory Group for Aerospace Research and Development, 7 Rue Ancelle 92200 Neuilly, Sur Seine, France.
48.
ANSYS INC
,
2009
, “
Ansys Workbench User's Guide
,” 275 Technology Drive, Canonsbug, PA 15317. Release 12.1.
49.
Richardson
,
L. F.
, and
Gaunt
,
J. A.
,
1927
, “
The Deferred Approach to the Limit
,”
Philos. Trans. R. Soc. London, Ser. A
,
226
, pp.
307
357
.10.1098/rsta.1927.0008
50.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p. 078001.10.1115/1.2960953
51.
Roache
,
P. J.
,
1998
,
Verification and Validation in Computational Sciences and Engineering
, Hermosa Publishers, Albuquerque
, NM
.
52.
ANSYS INC
,
2013
, “
Ansys Fluent Theory Guide 275 Technology Drive
,”
Canonsbug, PA
15317. Release 15.0.
53.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
54.
Allamaprabhu
,
C.
,
Raghunandan
,
B.
, and
Morinigo
,
J.
,
2011
, “
Improved Prediction of Flow Separation in Thrust Optimized Parabolic Nozzles With Fluent
,”
AIAA
Paper No. 2011-5689. 10.2514/6.2011-5689
55.
Hasan
,
R. G. M.
,
McGuirk
,
J. J.
,
Apsley
,
D. D.
, and
Leschziner
,
M. A.
,
2004
, “
A Turbulence Model Study of Separated 3D Jet/Afterbody Flow
,”
Aeronaut. J.
,
108
(
1079
), pp.
1
14
.10.1017/S0001924000004942
56.
Roe
,
P. L.
,
1981
, “
Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes
,”
J. Comput. Phys.
,
43
(
2
), pp.
357
372
.10.1016/0021-9991(81)90128-5
57.
Sutherland
,
W.
,
1893
, “
The Viscosity of Gases and Molecular Forces
,”
Philos. Mag.
,
36
(
223
), pp.
507
531
.10.1080/14786449308620508
58.
Stark
,
R.
, and
Wagner
,
B.
,
2009
, “
Experimental Study of Boundary Layer Separation in Truncated Ideal Contour Nozzles
,”
Shock Waves
,
19
(
3
), pp.
185
191
.10.1007/s00193-008-0174-6
59.
Stark
,
R.
, and
Hagemann
,
G.
,
2007
, “
Current Status of Numerical Flow Prediction for Separated Nozzle Flows
,”
2nd European Conference for Aerospace Sciences
, Brussels, Belgium, July 2–6, pp.
1
8
.https://www.eucass.eu/component/docindexer/?task=download&id=2846
60.
Martelli
,
E.
,
Saccoccio
,
L.
,
Ciottoli
,
P. P.
,
Tinney
,
C. E.
,
Baars
,
W. J.
, and
Bernardini
,
M.
,
2020
, “
Flow Dynamics and Wall-Pressure Signatures in a High-Reynolds-Number Overexpanded Nozzle With Free Shock Separation
,”
J. Fluid Mech.
,
895
(
1612
), p.
A29
.10.1017/jfm.2020.280
You do not currently have access to this content.