Abstract

We established and validated a radiant thermal test system using a miniaturized quartz lamp heating device designed with a novel search algorithm to meet aero-engine blade heating requirements. The device can perform rapid, high-temperature gradient tests on new-material aero-engine blades, which cannot be achieved through electromagnetic induction. The algorithm, derived from the Monte Carlo method (MCM) and pattern search, can solve the problems of the classical iterative search algorithm by searching lamp parameters and reducing the algorithm's time complexity. These searched power parameters enable the system's closed-loop control to achieve temperature gradients easily. The corresponding heating process was also simulated using commercial numerical analysis software, serving as a numerical validation for the algorithm-based system. The device could meet the thermal fatigue test requirements for the blade at six different temperature control points, including a maximum temperature exceeding 1150 K, a maximum temperature difference exceeding 160 K within 20 mm, and a heating rate exceeding 30 K/s. Thus, the device provides a promising technique for rapid, high-temperature heat treatment of complex small components, and the algorithm makes designing miniaturized quartz lamp heating devices more accessible and versatile for small components.

References

1.
Zeng
,
W.
,
Liu
,
J.
,
Yu
,
L.
,
Ma
,
H.
, and
Zheng
,
W.
,
2019
, “
Reaction Kinetic Simulation of the Combustion and Emission Characteristics of a Dual-Fuel Aero-Engine
,”
Fuel
,
237
, pp.
352
360
.10.1016/j.fuel.2018.09.122
2.
Padture
,
N.
,
Gell
,
M.
, and
Jordan
,
E.
,
2002
, “
Thermal Barrier Coatings for Gas-Turbine Engine Applications
,”
Science
,
296
(
5566
), pp.
280
284
.10.1126/science.1068609
3.
He
,
J.
,
Wang
,
X.
,
Zhou
,
H.
, and
Wang
,
X.
,
2022
, “
Low Cycle Fatigue of a γ'-Strengthened Co-Based Single Crystal Superalloy at 900 °C
,”
Mater. Charact.
,
185
, p.
111720
.10.1016/j.matchar.2022.111720
4.
Warren
,
J. R.
, and
Cowles
,
B. A.
,
1986
, “
A Simplified Thermal Mechanical Fatigue (TMF) Test Method
,”
ASME J. Eng. Gas Turbines Power
,
108
(
3
), pp.
515
520
.10.1115/1.3239939
5.
Thiele
,
M.
,
Gampe
,
U.
, and
Fischer
,
K. A.
,
2019
, “
Novel Test Facility for Investigation of the Impact of Thermally Induced Stress Gradients on Fatigue Life of Cooled Gas Turbine Components
,”
ASME J. Eng. Gas Turbines Power
,
141
(
3
), p.
032502
.10.1115/1.4041129
6.
Davison
,
C. R.
, and
Bird
,
J. W.
,
2008
, “
Review of Metrics and Assignment of Confidence Intervals for Health Management of Gas Turbine Engines
,” ASME Paper No. GT2008-50849.10.1115/GT2008-50849
7.
Davison
,
C. R.
, and
Birk
,
A. M.
,
2001
, “
Development of Fault Diagnosis and Failure Prediction Techniques for Small Gas Turbine Engines
,” ASME Paper No. 2001-GT-0548.10.1115/2001-GT-0548
8.
Huang
,
X.
,
2009
, “
High Temperature Radiation Heat Transfer Performance of Thermal Barrier Coatings With Multiple Layered Structures
,”
ASME J. Eng. Gas Turbines Power
,
131
(
1
), p.
011301
.10.1115/1.2967495
9.
Altun
,
G. C.
, and
Başol
,
A. M.
,
2022
, “
Numerical Analysis of the Radiant Heating Effectiveness of a Continuous Glass Annealing Furnace
,”
Appl. Therm. Eng.
,
204
, p.
117943
.10.1016/j.applthermaleng.2021.117943
10.
Wu
,
D.
,
Wang
,
Y.
,
Shang
,
L.
,
Pu
,
Y.
, and
Gao
,
Z.
,
2016
, “
Thermo-Mechanical Properties of C/SiC Composite Structure Under Extremely High Temperature Environment Up to 1500 °C
,”
Compos. Part B: Eng.
,
90
, pp.
424
431
.10.1016/j.compositesb.2015.12.047
11.
Wang
,
C.
,
Ping
,
W.
,
Bai
,
Q.
,
Cui
,
H.
,
Hensleigh
,
R.
,
Wang
,
R.
,
Brozena
,
A. H.
, et al.,
2020
, “
A General Method to Synthesize and Sinter Bulk Ceramics in Seconds
,”
Science
,
368
(
6490
), pp.
521
526
.10.1126/science.aaz7681
12.
Camci
,
C.
, and
Arts
,
T.
,
1985
, “
Experimental Heat Transfer Investigation Around the Film-Cooled Leading Edge of a High-Pressure Gas Turbine Rotor Blade
,”
ASME J. Eng. Gas Turbines Power
,
107
(
4
), pp.
1016
1021
.10.1115/1.3239805
13.
Yoshida
,
A.
,
Ohue
,
Y.
, and
Karasuno
,
I.
,
1994
, “
Surface Failure and Durability of Induction-Hardened Sintered Powder Metal Rollers and Gears With Various Hardened Depths
,”
ASME J. Mech. Des.
,
116
(
3
), pp.
730
737
.10.1115/1.2919443
14.
Ziemke
,
R. A.
,
2004
, “
Infrared Heater Used in Qualification Testing of International Space Station Radiators
,”
National Aeronautics and Space Administration, Langley Research Center
,
Hampton, VA
, Report No. NASA/TM-2004-212332.https://ntrs.nasa.gov/citations/20040073441
15.
Lyra
,
J. C.
, and
Novak
,
K. S.
,
1997
, “
The Mars Pathfinder System Level Solar Thermal Vacuum Test
,” AIAA Paper No. 97-2454.10.2514/6.1997-2454
16.
Cho
,
Y. M.
, and
Gyugyi
,
P.
,
1997
, “
Control of Rapid Thermal Processing: A System Theoretic Approach
,”
IEEE Trans. Control Syst. Technol.
,
5
(
6
), pp.
644
653
.10.1109/87.641407
17.
Jin
,
J.
,
Liu
,
M.
,
Lin
,
P.
,
Fu
,
T.
,
Hao
,
Y.
, and
Jin
,
H.
,
2019
, “
Ultra-High Temperature Processing by Concentrated Solar Energy With Accurate Temperature Measurement
,”
Appl. Therm. Eng.
,
150
, pp.
1337
1344
.10.1016/j.applthermaleng.2018.10.002
18.
Turner
,
T. L.
, and
Ash
,
R. L.
,
1994
, “
Numerical and Experimental Analyses of the Radiant Heat Flux Produced by Quartz Heating Systems
,”
National Aeronautics and Space Administration, Langley Research Center
,
Hampton, VA
, Report No. NASA TP-3387 1994.https://ntrs.nasa.gov/citations/19940023156
19.
Ash
,
R. L.
,
1972
, “
An Analysis of the Radiation Field Beneath a Bank of Tubular Quartz Lamps
,”
National Aeronautics and Space Administration, Langley Research Center
,
Hampton, VA
, Report No.
NASA-CR-191551
.https://ntrs.nasa.gov/citations/19940012069
20.
Brown
,
K. J.
,
Farrelly
,
R.
,
O'Shaughnessy
,
S. M.
, and
Robinson
,
A. J.
,
2016
, “
Energy Efficiency of Electrical Infrared Heating Elements
,”
Appl. Energy
,
162
, pp.
581
588
.10.1016/j.apenergy.2015.10.064
21.
Liu
,
H.
,
Wang
,
M.
,
Wang
,
J.
,
Zhang
,
G.
,
Liao
,
H.
,
Ru
,
H.
, and
Zhang
,
X.
,
2007
, “
Monte Carlo Simulations of Gas Flow and Heat Transfer in Vacuum Packaged MEMS Devices
,”
Appl. Therm. Eng.
,
27
(
2–3
), pp.
323
329
.10.1016/j.applthermaleng.2006.08.002
22.
Davison
,
C. R.
,
Strapp
,
J. W.
,
Lilie
,
L. E.
,
Ratvasky
,
T. P.
, and
Dumont
,
C.
,
2016
, “
Isokinetic TWC Evaporator Probe: Calculations and Systemic Error Analysis
,” AIAA Paper No. 2016-4060.10.2514/6.2016-4060
23.
Ren
,
T.
,
Modest
,
M. F.
, and
Roy
,
S.
,
2018
, “
Monte Carlo Simulation for Radiative Transfer in a High-Pressure Industrial Gas Turbine Combustion Chamber
,”
ASME J. Eng. Gas Turbines Power
,
140
(
5
), p.
051503
.10.1115/1.4038153
24.
Tolpadi
,
A. K.
,
Hu
,
I. Z.
,
Correa
,
S. M.
, and
Burrus
,
D. L.
,
1997
, “
Coupled Lagrangian Monte Carlo PDF–CFD Computation of Gas Turbine Combustor Flowfields With Finite-Rate Chemistry
,”
ASME J. Eng. Gas Turbines Power
,
119
(
3
), pp.
519
526
.10.1115/1.2817015
25.
Pandita
,
P.
,
Tsilifis
,
P.
,
Ghosh
,
S.
, and
Wang
,
L.
,
2021
, “
Scalable Fully Bayesian Gaussian Process Modeling and Calibration With Adaptive Sequential Monte Carlo for Industrial Applications
,”
ASME J. Mech. Des.
,
143
(
7
), p.
074502
.10.1115/1.4050246
26.
Liang
,
H.
,
You
,
S.
, and
Zhang
,
H.
,
2016
, “
Comparison of Three Optical Models and Analysis of Geometric Parameters for Parabolic Trough Solar Collectors
,”
Energy
,
96
, pp.
37
47
.10.1016/j.energy.2015.12.050
27.
Cheng
,
Z. D.
,
He
,
Y. L.
,
Cui
,
F.
,
Xu
,
R. J.
, and
Tao
,
Y. B.
,
2012
, “
Numerical Simulation of a Parabolic Trough Solar Collector With Nonuniform Solar Flux Conditions by Coupling FVM and MCRT Method
,”
Sol. Energy
,
86
(
6
), pp.
1770
1784
.10.1016/j.solener.2012.02.039
28.
He
,
Y. L.
,
Xiao
,
J.
,
Cheng
,
Z. D.
, and
Tao
,
Y. B.
,
2011
, “
A MCRT and FVM Coupled Simulation Method for Energy Conversion Process in Parabolic Trough Solar Collector
,”
Renewable Energy
,
36
(
3
), pp.
976
985
.10.1016/j.renene.2010.07.017
29.
Cheng
,
Z.
,
He
,
Y.
,
Du
,
B.
,
Wang
,
K.
, and
Liang
,
Q.
,
2015
, “
Geometric Optimization on Optical Performance of Parabolic Trough Solar Collector Systems Using Particle Swarm Optimization Algorithm
,”
Appl. Energy
,
148
, pp.
282
293
.10.1016/j.apenergy.2015.03.079
30.
Liang
,
H.
,
Fan
,
M.
,
You
,
S.
,
Zheng
,
W.
,
Zhang
,
H.
,
Ye
,
T.
, and
Zhen
,
X.
,
2017
, “
A Monte Carlo Method and Finite Volume Method Coupled Optical Simulation Method for Parabolic Trough Solar Collectors
,”
Appl. Energy
,
201
, pp.
60
68
.10.1016/j.apenergy.2017.05.047
31.
Zhao
,
G.
,
Li
,
X.
, and
Guan
,
Y.
,
2010
, “
Multi-Objective Optimization of the Heating Rods Layout for Rapid Electrical Heating Cycle Injection Mold
,”
ASME J. Mech. Des.
,
132
(
6
), p.
061001
.10.1115/1.4001529
32.
Du Pont
,
B. L.
, and
Cagan
,
J.
,
2012
, “
An Extended Pattern Search Approach to Wind Farm Layout Optimization
,”
ASME J. Mech. Des.
,
134
(
8
), p.
081002
.10.1115/1.4006997
33.
Ke
,
Z.
, and
Wang
,
J.
,
2015
, “
Numerical Investigations of Pulsed Film Cooling on an Entire Turbine Vane
,”
Appl. Therm. Eng.
,
87
, pp.
117
126
.10.1016/j.applthermaleng.2015.05.022
34.
Graziani
,
R. A.
,
Blair
,
M. F.
,
Taylor
,
J. R.
, and
Mayle
,
R. E.
,
1980
, “
An Experimental Study of Endwall and Airfoil Surface Heat Transfer in a Large Scale Turbine Blade Cascade
,”
ASME J. Eng. Power
,
102
(
2
), pp.
257
267
.10.1115/1.3230246
35.
SS-EN 60240-1
,
1995
, “
Characteristics of Electric Infra-Red Emitters for Industrial Heating - Part 1: Short Wave Infra-Red Emitters
,”
SAE
Paper No. IEC 60240-1.10.4271/IEC 60240-1
36.
Yin
,
S.
, and
Cagan
,
J.
,
2004
, “
Exploring the Effectiveness of Various Patterns in an Extended Pattern Search Layout Algorithm
,”
ASME J. Mech. Des.
,
126
(
1
), pp.
22
28
.10.1115/1.1641185
37.
Renders
,
L.
,
Marchal
,
K.
, and
Fostier
,
J.
,
2021
, “
Dynamic Partitioning of Search Patterns for Approximate Pattern Matching Using Search Schemes
,”
iScience
,
24
(
7
), p.
102687
.10.1016/j.isci.2021.102687
38.
Bogard
,
D. G.
, and
Thole
,
K.
,
2006
, “
A Gas Turbine Film Cooling
,”
J. Propul. Power
,
22
(
2
), pp.
249
270
.10.2514/1.18034
39.
Bunker
,
R. S.
,
2005
, “
A Review of Shaped Hole Turbine Film-Cooling Technology
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
127
(
4
), pp.
441
453
.10.1115/1.1860562
40.
Liu
,
L.
,
Fu
,
S.
,
Hu
,
Z.
,
Wu
,
J.
,
Chen
,
J.
,
Jin
,
X.
, and
Fan
,
X.
,
2023
, “
Thermo-Mechanical Analysis of TBC-Film Cooling System Under High Blowing Ratio Considering the Effects of Curvature
,”
Surf. Coat. Technol.
,
470
, p.
129826
.10.1016/j.surfcoat.2023.129826
41.
Jiang
,
L.
,
Wu
,
X.
, and
Zhang
,
Z.
,
2014
, “
Conjugate Heat Transfer of an Internally Air-Cooled Nozzle Guide Vane and Shrouds
,”
Adv. Mech. Eng.
,
6
, p.
146523
.10.1155/2014/146523
42.
Du
,
K.
, and
Li
,
J.
,
2016
, “
Numerical Study on the Effects of Slot Injection Configuration and Endwall Alignment Mode on the Film Cooling Performance of Vane Endwall
,”
Int. J. Heat Mass Transfer
,
98
, pp.
768
777
.10.1016/j.ijheatmasstransfer.2016.02.014
43.
Shi
,
X.
,
Wei
,
X.
, and
Ji
,
H.
,
2023
, “
Comparative Analysis of Infrared Signatures of Turbofan Engine Exhaust System With or Without Afterburning
,”
ASME J. Eng. Gas Turbines Power
,
145
(
7
), p.
071007
.10.1115/1.4056927
44.
Chang
,
P. C.
, and
Hwang
,
S. J.
,
2006
, “
Simulation of Infrared Rapid Surface Heating for Injection Molding
,”
Int. J. Heat Mass Transfer
,
49
(
21–22
), pp.
3846
3854
.10.1016/j.ijheatmasstransfer.2006.04.014
45.
Manikumar
,
R.
,
Valan Arasu
,
A.
, and
Jayaraj
,
S.
,
2012
, “
Computational Fluid Dynamics Analysis of a Trapezoidal Cavity Absorber Used for the Linear Fresnel Reflector Solar Concentrator System
,”
J. Renewable Sustainable Energy
,
4
(
6
), p.
063145
.10.1063/1.4772636
46.
Menter
,
F. R.
,
2009
, “
Review of the Shear-Stress Transport Turbulence Model Experience From an Industrial Perspective
,”
Int. J. Comput. Fluid Dyn.
,
23
(
4
), pp.
305
316
.10.1080/10618560902773387
47.
Zhu
,
W.
,
Wang
,
J. W.
,
Yang
,
L.
,
Zhou
,
Y. C.
,
Wei
,
Y. G.
, and
Wu
,
R. T.
,
2017
, “
Modeling and Simulation of the Temperature and Stress Fields in a 3D Turbine Blade Coated With Thermal Barrier Coatings
,”
Surf. Coat. Technol.
,
315
, pp.
443
453
.10.1016/j.surfcoat.2017.03.012
48.
Gündeş
,
A. N.
,
Özbay
,
H.
, and
Özgüler
,
A. B.
,
2007
, “
PID Controller Synthesis for a Class of Unstable MIMO Plants With I/O Delays
,”
Automatica
,
43
(
1
), pp.
135
142
.10.1016/j.automatica.2006.08.009
49.
Chang
,
Y. C.
,
2000
, “
Robust Tracking Control for Nonlinear MIMO Systems Via Fuzzy Approaches
,”
Automatica
,
36
(
10
), pp.
1535
1545
.10.1016/S0005-1098(00)00083-2
You do not currently have access to this content.