Abstract

The tightening in the international regulations is leading the energy production sector toward the usage of hydrogen, which is a zero-carbon energy carrier. In the field of gas turbine lifetime extension, a nonpremixed approach including hydrogen blending with conventional fuels is the most promising. However, high-temperature spots might occur, thus increasing thermo-mechanical stresses and NOx emissions. Therefore, a reliable evaluation of the impact of hydrogen blends in combustors characterized by nonpremixed flames is necessary. In the present work, a 40 MW heavy-duty multican combustor belonging to EthosEnergy is investigated by means of steady, reactive simulations by using the ANSYS® FLUENT® solver. The combustor geometry is simplified by removing the casing volume, being the flow split among the holes already available. Such simplification allows for paying major attention to the chemical kinetics thanks to the use of the extended reaction mechanism for natural gas developed by National University of Ireland Galway. Simulations include the assessment of the natural gas base load configuration together with hydrogen blends up to 50% in volume, while maintaining unaltered the turbine inlet temperature (TIT). The obtained data provide some retrofitting guidelines in the field of hydrogen usage in nonpremixed combustion and prove for a modified temperature field in the combustor core and close to the basket. A linear increase in NOx emission is also associated with hydrogen addition, thus suggesting the need for NOx abatement technologies (e.g., water injection).

References

1.
IEA
,
2020
,
Energy Technology Perspectives 2020
,
International Energy Agency
,
Paris, France
.
2.
Laveneziana
,
L.
,
Rosafio
,
N.
,
Salvadori
,
S.
,
Misul
,
D. A.
,
Baratta
,
M.
,
Forno
,
L.
,
Valsania
,
M.
, and
Toppino
,
M.
,
2022
, “
Conjugate Heat Transfer Analysis of the Aero-Thermal Impact of Different Feeding Geometries for Internal Cooling in Lifetime Extension Processes for Heavy-Duty Gas Turbines
,”
Energies
,
15
(
9
), p.
3022
.10.3390/en15093022
3.
Zeldovich
,
Y. B.
,
2006
, “
To the Question of Energy Use of Detonation Combustion
,”
J. Propuls. Power
,
22
(
3
), pp.
588
592
.10.2514/1.22705
4.
Stathopoulos
,
P.
,
2018
, “
Comprehensive Thermodynamic Analysis of the Humphrey Cycle for Gas Turbines With Pressure Gain Combustion
,”
Energies
,
11
(
12
), p.
3521
.10.3390/en11123521
5.
Campbell
,
A.
,
Goldmeer
,
J.
,
Healy
,
T.
,
Washam
,
R.
,
Molie‘re
,
M.
, and
Citeno
,
J.
,
2008
, “
Heavy Duty Gas Turbines Fuel Flexibility
,”
ASME
Paper No. GT2008-51368.10.1115/GT2008-51368
6.
Xing
,
C.
,
Chen
,
X.
,
Qiu
,
P.
,
Liu
,
L.
,
Yu
,
X.
,
Zhao
,
Y.
,
Zhang
,
L.
,
Liu
,
J.
, and
Hu
,
Q.
,
2022
, “
Effect of Fuel Flexibility on Combustion Performance of a Micro-Mixing Gas Turbine Combustor at Different Fuel Temperatures
,”
J. Energy Inst.
,
102
, pp.
100
117
.10.1016/j.joei.2022.02.010
7.
Benaissa
,
S.
,
Adouane
,
B.
,
Ali
,
S.
,
Rashwan
,
S. S.
, and
Aouachria
,
Z.
,
2022
, “
Investigation on Combustion Characteristics and Emissions of Biogas/Hydrogen Blends in Gas Turbine Combustors
,”
Therm. Sci. Eng. Prog.
,
27
, p.
101178
.10.1016/j.tsep.2021.101178
8.
Andreini
,
A.
,
Bacci
,
T.
,
Insinna
,
M.
,
Mazzei
,
L.
, and
Salvadori
,
S.
,
2018
, “
Modelling Strategies for the Prediction of Hot Streak Generation in Lean Burn Aeroengine Combustors
,”
Aerosp. Sci. Technol.
,
79
, pp.
266
277
.10.1016/j.ast.2018.05.030
9.
Andreini
,
A.
,
Bacci
,
T.
,
Insinna
,
M.
,
Mazzei
,
L.
, and
Salvadori
,
S.
,
2017
, “
Hybrid RANS-LES Modeling of the Aerothermal Field in an Annular Hot Streak Generator for the Study of Combustor–Turbine Interaction
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p.
021508
.10.1115/1.4034358
10.
Insinna
,
M.
,
Griffini
,
D.
,
Salvadori
,
S.
, and
Martelli
,
F.
,
2015
, “
Effects of Realistic Inflow Conditions on the Aero-Thermal Performance of a Film-Cooled Vane
,”
Proceedings of the ETC Conference, 11th European Turbomachinery Conference
, Madrid, Spain, Mar. 23–27, Paper No. ETC11-095.https://www.researchgate.net/publication/272442918_Effects_of_Realistic_Inflow_Conditions_on_the_Aero-Thermal_Performance_of_a_Film-Cooled_Vane
11.
Chiesa
,
P.
,
Lozza
,
G.
, and
Mazzocchi
,
L.
,
2005
, “
Using Hydrogen as Gas Turbine Fuel
,”
ASME J. Eng. Gas Turbines Power
,
127
(
1
), pp.
73
80
.10.1115/1.1787513
12.
Ebi
,
D.
,
Bombach
,
R.
, and
Jansohn
,
P.
,
2021
, “
Swirl Flame Boundary Layer Flashback at Elevated Pressure: Modes of Propagation and Effect of Hydrogen Addition
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
6345
6353
.10.1016/j.proci.2020.06.305
13.
Lewis
,
G. D.
,
1981
, “
Prediction of NOx Emissions
,”
ASME
Paper No. 81-GT-119.10.1115/81-GT-119
14.
Nicol
,
D.
,
Malte
,
P. C.
,
Lai
,
J.
,
Marinov
,
N.
,
Pratt
,
D. T.
, and
Corr
,
R. A.
, “
NOx Sensitivities for Gas Turbine Engines Operated on Lean-Premixed Combustion and Conventional Diffusion Flames
,”
ASME
Paper No. 92-GT-115.10.1115/92-GT-115
15.
Elward
,
K. M.
,
Flodman
,
D. A.
, and
Symonds
,
R. A.
,
1992
, “
Massive Steam Injection on an MS6001B Gas Turbine in Cogeneration Service
,”
ASME
Paper No. 92-GT-373.10.1115/92-GT-373
16.
Gazzani
,
M.
,
Chiesa
,
P.
,
Martelli
,
E.
,
Sigali
,
S.
, and
Brunetti
,
I.
,
2014
, “
Using Hydrogen as Gas Turbine Fuel: Premixed Versus Diffusive Flame Combustors
,”
ASME J. Eng. Gas Turbines Power
,
136
(
5
), p.
051504
.10.1115/1.4026085
17.
Cappelletti
,
A.
, and
Martelli
,
F.
,
2017
, “
Investigation of a Pure Hydrogen Fueled Gas Turbine Burner
,”
Int. J. Hydrogen Energy
,
42
(
15
), pp.
10513
10523
.10.1016/j.ijhydene.2017.02.104
18.
Cappelletti
,
A.
,
Martelli
,
F.
,
Bianchi
,
E.
, and
Trifoni
,
E.
, “
Numerical Redesign of 100 kW MGT Combustor for 100% H2 Fuelling
,”
Energy Procedia
, 45(2014), pp. 1412–1421.10.1016/j.egypro.2014.01.148
19.
Brunetti
,
I.
,
Riccio
,
G.
,
Rossi
,
N.
,
Cappelleti
,
A.
,
Bonelli
,
L.
,
Marini
,
A.
,
Paganini
,
E.
, and
Martelli
,
F.
,
2011
, “
Experimental and Numerical Characterization of Lean Hydrogen Combustion in a Premixed Burner Prototype
,”
ASME
Paper No. GT2011-45623.10.1115/GT2011-45623
20.
Baratta
,
M.
,
Cardile
,
F.
,
Misul
,
D. A.
,
Rosafio
,
N.
,
Salvadori
,
S.
,
Forno
,
L.
, and
Toppino
,
M.
,
2020
, “
Redesign of the TG20 Heavy-Duty Gas Turbine to Increase Turbine Inlet Temperature and Global Efficiency
,”
ASME
Paper No. GT2020-15269.10.1115/GT2020-15269
21.
Carusotto
,
S.
,
Goel
,
P.
,
Baratta
,
M.
,
Misul
,
D. A.
,
Salvadori
,
S.
,
Cardile
,
F.
,
Forno
,
L.
,
Toppino
,
M.
, and
Valsania
,
M.
,
2022
, “
Combustion Characterization in a Diffusive Gas Turbine Burner for Hydrogen-Compliant Applications
,”
MDPI Energies
,
15
(
11
), p.
4117
.10.3390/en15114117
22.
Ansys
,
2022
, “
Ansys Fluent Theory Guide
,” accessed July 2022, Release 2022 R1.
23.
Marini
,
A.
,
Riccio
,
G.
,
Martelli
,
F.
,
Sigali
,
S.
, and
Cocchi
,
S.
,
2010
, “
Numerical Re-Design of a Heavy Duty Gas Turbine Hydrogen-Fired Combustion Chamber
,”
ASME
Paper No. GT2010-43970.10.1115/GT2010-43970
24.
Yakhot
,
V.
,
Orszag
,
S. A.
,
Thangam
,
S.
,
Gatski
,
T. B.
, and
Speziale
,
C. G.
,
1992
, “
Development of Turbulence Models for Shear Flows by a Double Expansion Technique
,”
Phys. Fluids A
,
4
(
7
), pp.
1510
1520
.10.1063/1.858424
25.
Patil
,
S.
,
Abraham
,
S.
,
Tafti
,
D.
,
Ekkad
,
S.
,
Kim
,
Y.
,
Dutta
,
P.
,
Moon
,
H. K.
, and
Srinivasan
,
R.
,
2011
, “
Experimental and Numerical Investigation of Convective Heat Transfer in a Gas Turbine Can Combustor
,”
ASME J. Turbomach.
,
133
, p.
011028
.10.1115/1.4001173
26.
Kahraman
,
N.
,
Tangöz
,
S.
, and
Akansu
,
S. O.
,
2018
, “
Numerical Analysis of a Gas Turbine Combustor Fueled by Hydrogen in Comparison With Jet-A Fuel
,”
Fuel
,
217
, pp.
66
77
.10.1016/j.fuel.2017.12.071
27.
Douglas
,
C. M.
,
Shaw
,
S. L.
,
Martz
,
T. D.
,
Steele
,
R. C.
,
Noble
,
D. R.
,
Emerson
,
B. L.
, and
Liuwen
,
T. C.
,
2022
, “
Pollutant Emissions Reporting and Performance Considerations for Hydrogen-Hydrocarbon Fuels in Gas Turbines
,”
ASME J. Eng. for Gas Turbines Power
, 144(9), p. 091003.10.1115/1.4054949
28.
Van Oijen
,
J. A.
, and
de Goey
,
L. P. H.
,
2000
, “
Modelling of Premixed Laminar Flames Using Flamelet-Generated Manifolds
,”
Combust. Sci. Technol.
,
161
(
1
), pp.
113
137
.10.1080/00102200008935814
29.
Bourque
,
G.
,
Healy
,
D.
,
Curran
,
H. J.
,
Zinner
,
C.
,
Kalitan
,
D.
,
de Vries
,
J.
,
Aul
,
C.
, and
Petersen
,
E.
,
2008
, “
Ignition and Flame Speed Kinetics of Two Natural Gas Blends With High Levels of Heavier Hydrocarbons
,”
ASME J. Eng. Gas Turbines Power
, 132(2), p. 021504.10.1115/1.3124665
30.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
, et al.,
2000
, “GRI-Mech 3.0,” accessed Oct. 9, 2023, https://web.archive.org/web/20071029194024/http://www.me.berkeley.edu/gri_mech/
31.
Andreini
,
A.
, and
Facchini
,
B.
,
2004
, “
Gas Turbines Design and Off-Design Performance Analysis With Emissions Evaluation
,”
ASME J. Eng. Gas Turbines Power
,
126
(
1
), pp.
83
91
.10.1115/1.1619427
32.
Kroniger
,
D.
,
Lipperheide
,
M.
, and
Wirsum
,
M.
,
2017
, “
Effects of Hydrogen Fueling on NOx Emissions - A Reactor Model Approach for an Industrial Gas Turbine Combustor
,”
ASME
Paper No. GT2017-64401.10.1115/GT2017-64401
33.
Grimm
,
F.
,
2022
, “
Low-Order Reactor-Network-Based Prediction of Pollutant Emissions Applied to FLOX® Combustion
,”
MDPI Energies
,
15
(
5
), p.
1740
.10.3390/en15051740
34.
Innocenti
,
A.
,
Andreini
,
A.
,
Giusti
,
A.
,
Facchini
,
B.
,
Cerutti
,
M.
,
Ceccherini
,
G.
, and
Riccio
,
G.
,
2014
, “
Numerical Investigations of NOx Emissions of a Partially Premixed Burner for Natural Gas Operations in Industrial Gas Turbine
,”
ASME
Paper No. GT2014-26906.10.1115/GT2014-26906
35.
Purohit
,
A. L.
,
Nalbandyan
,
A.
,
Malte
,
P. C.
, and
Novosselov
,
I. V.
,
2021
, “
NNH Mechanism in low-NOx Hydrogen Combustion: Experimental and Numerical Analysis of Formation Pathway
,”
Fuel
,
292
, p.
120186
.10.1016/j.fuel.2021.120186
36.
Glarborg
,
P.
,
Miller
,
J. A.
,
Ruscic
,
B.
, and
Klippenstein
,
S. J.
,
2018
, “
Modeling Nitrogen Chemistry in Combustion
,”
Prog. Energy Combust. Sci.
,
67
, pp.
31
68
.10.1016/j.pecs.2018.01.002
37.
Gianola
,
M.
,
1988
, “
Full-Engine Field Test: An Approach to Improve the Gas Turbine Combustion System
,”
ASME J. Eng. Gas Turbines Power
,
110
(
4
), pp.
677
685
.10.1115/1.3240191
38.
El-Ghafour
,
S. A. A.
,
El-Dein
,
A. H. E.
, and
Aref
,
A. A. R.
,
2010
, “
Combustion Characteristics of Natural Gas-Hydrogen Hybrid Fuel Turbulent Diffusion Flame
,”
Int. J. Hydrogen Energy
,
35
(
6
), pp.
2556
2565
.10.1016/j.ijhydene.2009.12.049
You do not currently have access to this content.