Abstract

In recent years, hydrogen-carrying compounds have accrued interest as an alternative to traditional fossil fuels due to their function as zero-emission fuels. As such, there is interest in investigating hydrogen-carrying compounds to improve understanding of the fuels' characteristics for use in high pressure systems. In the current study, the oxidation of ammonia/natural gas/hydrogen mixtures was carried out to study carbon monoxide (CO) formation profiles as well as the ignition delay times (IDTs) behind reflected shock waves in order to refine chemical kinetic models. Experiments were carried out in the University of Central Florida's shock tube facility by utilizing chemiluminescence to obtain OH* emission and laser absorption spectroscopy to obtain CO profiles over a temperature range between 1200 K and 1800 K with an average pressure of 2.2 atm. Experimental mixtures included both neat and combination natural gas/hydrogen with ammonia addition, with all mixtures except one having an equivalence ratio of 1. Results were then compared with the GRI 3.0 mechanism, as well as the newly developed UCF 2022 mechanism utilizing chemkin-pro software. In general, both models were able to capture the trend in auto-ignition delay times and CO time histories for natural gas and ammonia mixtures. However, for ammonia–hydrogen mixtures, GRI 3.0 failed to predict ignition delay times, whereas the UCF 2022 mechanism was able to capture the IDTs within the uncertainty limits of the experiments. A sensitivity analysis was conducted for different mixtures to understand the important reactions at the experimental conditions. Finally, a reaction pathway analysis was carried out to understand important ammonia decomposition pathways in the presence of hydrogen and natural gas.

References

1.
Lindstrom
,
P.
,
2019
, “
EIA Projects Global Energy-Related CO2 Emissions Will Increase Through 2050
,” EIA—U.S. Energy Information Administration, Brooklyn, NY, Report.https://www.eia.gov/todayinenergy/detail.php?id=41493
2.
Brown
,
T.
,
2018
, “
Ammonia for Power: A Literature Review
,” Ammonia Energy Association, Brooklyn, NY, accessed Sept. 29, 2022, https://www.ammoniaenergy.org/articles/ammonia-for-power-a-literature-review/
3.
Bull
,
D. C.
,
1968
, “
A Shock Tube Study of the Oxidation of Ammonia
,”
Combust. Flame
,
12
(
6
), pp.
603
610
.10.1016/0010-2180(68)90079-5
4.
Takeyama
,
T.
, and
Miyama
,
H.
,
1966
, “
Kinetic Studies of Ammonia Oxidation in Shock Waves. II. The Rate of Ammonia Consumption
,”
Bull. Chem. Soc. Jpn.
,
39
(
11
), pp.
2352
2355
.10.1246/bcsj.39.2352
5.
Takeyama
,
T.
, and
Miyama
,
H.
,
1965
, “
Kinetic Studies of Ammonia Oxidation in Shock Waves. I. The Reaction Mechanism for the Induction Period
,”
Bull. Chem. Soc. Jpn.
,
38
(
10
), pp.
1670
1674
.10.1246/bcsj.38.1670
6.
Takeyama
,
H. M. T.
,
1967
,
Eleventh Symposium (International) on Combustion
,
The Combustion Institute
,
Pittsburgh, PA
.
7.
Soloukhin
,
R. I.
,
1967
,
Eleventh Symposium (International) on Combustion
,
The Combustion Institute
,
Pittsburgh, PA
.
8.
Drummond
,
L. J.
, and
Hiscock
,
S. W.
,
1967
, “
Shock-Initiated Exothermic Reactions. II. The Oxidation of Ammonia
,”
Aust. J. Chem.
,
20
(
5
), pp.
825
836
.10.1071/CH9670825
9.
Bradley
,
J. N.
, Butlin,
R. N.
, and
Lewis
,
D.
,
1968
, “
Oxidation of Ammonia in Shock Waves
,”
Trans. Faraday Soc.
,
64
, pp.
71
78
.10.1039/T F9686400071
10.
He
,
X.
,
Shu
,
B.
,
Nascimento
,
D.
,
Moshammer
,
K.
,
Costa
,
M.
, and
Fernandes
,
R. X.
,
2019
, “
Auto-Ignition Kinetics of Ammonia and Ammonia/Hydrogen Mixtures at Intermediate Temperatures and High Pressures
,”
Combust. Flame
,
206
, pp.
189
200
.10.1016/j.combustflame.2019.04.050
11.
Song
,
Y.
,
Hashemi
,
H.
,
Christensen
,
J. M.
,
Zou
,
C.
,
Marshall
,
P.
, and
Glarborg
,
P.
,
2016
, “
Ammonia Oxidation at High Pressure and Intermediate Temperatures
,”
Fuel
,
181
, pp.
358
365
.10.1016/j.fuel.2016.04.100
12.
Iki
,
N.
,
Kurata
,
O.
,
Matsunuma
,
T.
,
Inoue
,
T.
,
Tsujimura
,
T.
,
Furutani
,
H.
,
Kobayashi
,
H.
, and
Hayakawa
,
A.
,
2017
, “
Operation and Flame Observation of Micro Gas Turbine Firing Ammonia
,”
ASME
Paper No. GT2017-64250.10.1115/GT2017-64250
13.
Iki
,
N.
,
Kurata
,
O.
,
Matsunuma
,
T.
,
Inoue
,
T.
,
Tsujimura
,
T.
,
Furutani
,
H.
,
Kobayashi
,
H.
,
Hayakawa
,
A.
,
Arakawa
,
Y.
, and
Ichikawa
,
A.
,
2016
, “
Micro Gas Turbine Firing Ammonia
,”
ASME
Paper No. GT2016-56954.10.1115/GT2016-56954
14.
Mathieu
,
O.
, and
Petersen
,
E. L.
,
2015
, “
Experimental and Modeling Study on the High-Temperature Oxidation of Ammonia and Related NOx Chemistry
,”
Combust. Flame
,
162
(
3
), pp.
554
570
.10.1016/j.combustflame.2014.08.022
15.
Mei
,
B.
,
Ma
,
S.
,
Zhang
,
Y.
,
Zhang
,
X.
,
Li
,
W.
, and
Li
,
Y.
,
2020
, “
Exploration on Laminar Flame Propagation of Ammonia and Syngas Mixtures up to 10 atm
,”
Combust. Flame
,
220
, pp.
368
377
.10.1016/j.combustflame.2020.07.011
16.
Okafor
,
E. C.
,
Somarathne
,
K. D. K. A.
,
Ratthanan
,
R.
,
Hayakawa
,
A.
,
Kudo
,
T.
,
Kurata
,
O.
,
Iki
,
N.
,
Tsujimura
,
T.
,
Furutani
,
H.
, and
Kobayashi
,
H.
,
2020
, “
Control of NOx and Other Emissions in Micro Gas Turbine Combustors Fuelled With Mixtures of Methane and Ammonia
,”
Combust. Flame
,
211
, pp.
406
416
.10.1016/j.combustflame.2019.10.012
17.
Otomo
,
J.
,
Koshi
,
M.
,
Mitsumori
,
T.
,
Iwasaki
,
H.
, and
Yamada
,
K.
,
2018
, “
Chemical Kinetic Modeling of Ammonia Oxidation With Improved Reaction Mechanism for Ammonia/Air and Ammonia/Hydrogen/Air Combustion
,”
Int. J. Hydrogen Energy
,
43
(
5
), pp.
3004
3014
.10.1016/j.ijhydene.2017.12.066
18.
Mathieu
,
O.
,
Kopp
,
M. M.
, and
Petersen
,
E. L.
,
2013
, “
Shock-Tube Study of the Ignition of Multi-Component Syngas Mixtures With and Without Ammonia Impurities
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3211
3218
.10.1016/j.proci.2012.05.008
19.
Shu
,
B.
,
Vallabhuni
,
S. K.
,
He
,
X.
,
Issayev
,
G.
,
Moshammer
,
K.
,
Farooq
,
A.
, and
Fernandes
,
R. X.
,
2019
, “
A Shock Tube and Modeling Study on the Autoignition Properties of Ammonia at Intermediate Temperatures
,”
Proc. Combust. Inst.
,
37
(
1
), pp.
205
211
.10.1016/j.proci.2018.07.074
20.
da Rocha
,
R. C.
,
Costa
,
M.
, and
Bai
,
X.-S.
,
2019
, “
Chemical Kinetic Modelling of Ammonia/Hydrogen/Air Ignition, Premixed Flame Propagation and NO Emission
,”
Fuel
,
246
, pp.
24
33
.10.1016/j.fuel.2019.02.102
21.
Chen
,
J.
,
Jiang
,
X.
,
Qin
,
X.
, and
Huang
,
Z.
,
2021
, “
Effect of Hydrogen Blending on the High Temperature Auto-Ignition of Ammonia at Elevated Pressure
,”
Fuel
,
287
, p.
119563
.10.1016/j.fuel.2020.119563
22.
Valera-Medina
,
A.
,
Pugh
,
D. G.
,
Marsh
,
P.
,
Bulat
,
G.
, and
Bowen
,
P.
,
2017
, “
Preliminary Study on Lean Premixed Combustion of Ammonia-Hydrogen for Swirling Gas Turbine Combustors
,”
Int. J. Hydrogen Energy
,
42
(
38
), pp.
24495
24503
.10.1016/j.ijhydene.2017.08.028
23.
Pochet
,
M.
,
Dias
,
V.
,
Moreau
,
B.
,
Foucher
,
F.
,
Jeanmart
,
H.
, and
Contino
,
F.
,
2019
, “
Experimental and Numerical Study, Under LTC Conditions, of Ammonia Ignition Delay With and Without Hydrogen Addition
,”
Proc. Combust. Inst.
,
37
(
1
), pp.
621
629
.10.1016/j.proci.2018.05.138
24.
Li
,
J.
,
Huang
,
H.
,
Kobayashi
,
N.
,
Wang
,
C.
, and
Yuan
,
H.
,
2017
, “
Numerical Study on Laminar Burning Velocity and Ignition Delay Time of Ammonia Flame With Hydrogen Addition
,”
Energy
,
126
, pp.
796
809
.10.1016/j.energy.2017.03.085
25.
Oh
,
S.
,
Park
,
C.
,
Kim
,
S.
,
Kim
,
Y.
,
Choi
,
Y.
, and
Kim
,
C.
,
2021
, “
Natural Gas–Ammonia Dual-Fuel Combustion in Spark-Ignited Engine With Various Air–Fuel Ratios and Split Ratios of Ammonia Under Part Load Condition
,”
Fuel
,
290
, p.
120095
.10.1016/j.fuel.2020.120095
26.
Ishaq
,
H.
, and
Dincer
,
I.
,
2020
, “
A Comprehensive Study on Using New Hydrogen-Natural Gas and Ammonia-Natural Gas Blends for Better Performance
,”
J. Nat. Gas Sci. Eng.
,
81
, p.
103362
.10.1016/j.jngse.2020.103362
27.
Ito
,
S.
,
Uchida
,
M.
,
Onishi
,
S.
,
Kato
,
S.
,
Fujimori
,
T.
, and
Kobayashi
,
H.
,
2018
, “
Performance of Ammonia-Natural Gas Co-Fired Gas Turbine for Power Generation
,”
15th Annual NH3 Fuel Conference
,
NH3 Fuel Association
,
Pittsburgh, PA
, Oct. 31.https://www.ammoniaenergy.org/wpcontent/uploads/2019/08/20191112.1454-AICHE2019_IHI-ammonia-GT.pdf
28.
Onishi
,
S.
,
Ito
,
S.
,
Uchida
,
M.
,
Kato
,
S.
,
Saito
,
T.
,
Fujimori
,
T.
, and
Kobayashi
,
H.
,
2017
, “
Methods for Low NOx Combustion in Ammonia/Natural Gas Dual Fuel Gas Turbine Combustor
,”
Proceedings of AIChE Annual Meeting
, Minneapolis, MN, Nov. 1.https://www.ammoniaenergy.org/paper/methodsfor-low-nox-combustion-in-ammonia-natural-gas-dual-fuel-gas-turbinecombustor/#:~:text=These%20results%20revealed%20that%20there,secondary%20zone%20with%20secondary%20air
29.
Reiter
,
A. J.
, and
Kong
,
S.-C.
,
2008
, “
Demonstration of Compression-Ignition Engine Combustion Using Ammonia in Reducing Greenhouse Gas Emissions
,”
Energy Fuels
,
22
(
5
), pp.
2963
2971
.10.1021/ef800140f
30.
Koroglu
,
B.
,
Neupane
,
S.
,
Pryor
,
O.
,
Peale
,
R. E.
, and
Vasu
,
S. S.
,
2018
, “
High Temperature Infrared Absorption Cross Sections of Methane Near 3.4 μm in Ar and CO2 Mixtures
,”
J. Quant. Spectrosc. Radiat. Transfer
,
206
, pp.
36
45
.10.1016/j.jqsrt.2017.11.003
31.
Koroglu
,
B.
,
Pryor
,
O. M.
,
Lopez
,
J.
,
Nash
,
L.
, and
Vasu
,
S. S.
,
2016
, “
Shock Tube Ignition Delay Times and Methane Time-Histories Measurements During Excess CO2 Diluted Oxy-Methane Combustion
,”
Combust. Flame
,
164
, pp.
152
163
.10.1016/j.combustflame.2015.11.011
32.
Pryor
,
O.
,
Barak
,
S.
,
Lopez
,
J.
,
Ninnemann
,
E.
,
Koroglu
,
B.
,
Nash
,
L.
, and
Vasu
,
S.
,
2017
, “
High Pressure Shock Tube Ignition Delay Time Measurements During Oxy-Methane Combustion With High Levels of CO2 Dilution
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042208
.10.1115/1.4036254
33.
Davidson
,
D. F.
, and
Hanson
,
R. K.
,
2004
, “
Interpreting Shock Tube Ignition Data
,”
Int. J. Chem. Kinet.
,
36
(
9
), pp.
510
523
.10.1002/kin.20024
34.
Ninnemann
,
E.
,
Kim
,
G.
,
Laich
,
A.
,
Almansour
,
B.
,
Terracciano
,
A. C.
,
Park
,
S.
, and
Thurmond
,
K.
, et al.,
2019
, “
Co-Optima Fuels Combustion: A Comprehensive Experimental Investigation of Prenol Isomers
,”
Fuel
,
254
, p.
115630
.10.1016/j.fuel.2019.115630
35.
Rothman
,
L. S.
,
Gordon
,
I. E.
,
Babikov
,
Y.
,
Barbe
,
A.
,
Chris Benner
,
D.
,
Bernath
,
P. F.
, and
Birk
,
M.
, et al.,
2013
, “
The HITRAN2012 Molecular Spectroscopic Database
,”
J. Quant. Spectrosc. Radiat. Transfer
,
130
, pp.
4
50
.10.1016/j.jqsrt.2013.07.002
36.
Reaction Design
,
2011
,
Chemkin-Pro
,
Reaction Design
,
San Diego, CA
.
37.
Rahman
,
R. K.
,
Barak
,
S.
,
Manikantachari
,
K. R.
V.
,
Ninnemann
,
E.
,
Hosangadi
,
A.
,
Zambon
,
A.
, and
Vasu
,
S. S.
,
2020
, “
Probing the Effects of NOx and SOx Impurities on Oxy-Fuel Combustion in Supercritical CO2: Shock Tube Experiments and Chemical Kinetic Modeling
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
122302
.10.1115/1.4047314
38.
Zhou
,
C.-W.
,
Li
,
Y.
,
Burke
,
U.
,
Banyon
,
C.
,
Somers
,
K. P.
,
Ding
,
S.
, and
Khan
,
S.
, et al.,
2018
, “
An Experimental and Chemical Kinetic Modeling Study of 1,3-Butadiene Combustion: Ignition Delay Time and Laminar Flame Speed Measurements
,”
Combust. Flame
,
197
, pp.
423
438
.10.1016/j.combustflame.2018.08.006
39.
Dean
,
A. M.
, and
Bozzelli
,
J. W.
,
2000
, “
Combustion Chemistry of Nitrogen
,”
Gas-Phase Combustion Chemistry
,
Springer
, New York, pp.
125
341
.
You do not currently have access to this content.