Abstract

Over the past decade, the drive towards more efficient aircraft engines has pushed the boundaries of operating ranges far beyond a linear structural context. Nonlinear interfaces, such as blade-tip/casing contacts, are to be expected in nominal operating conditions. However, current blade design methodologies still rely on empirical structural considerations, often linear, which may lead to costly redesign operations. This work aims at proposing a methodology for the redesign of blades undergoing nonlinear structural interactions. A three-step redesign process is considered: (1) parameterization of an existing blade, (2) update of blade parameters with respect to a surrogate performance criterion, and (3) performance check of the optimized blade. An original two-way parameterization method is proposed to parameterize existing blades and generate models from blade parameters. As a proof-of-concept, the redesign of the NASA compressor blade rotor 37 and fan blade rotor 67 with respect to blade-tip/casing contacts is considered. High-fidelity parameterized models of the initial blades are obtained and their dynamic response to contact interactions are analyzed. Geometries are updated with respect to their clearance consumption, as its minimization has shown beneficial effects on the considered contact interactions. The proposed methodology allows us to better assess the relevance of this performance criterion in the context of blade-tip/casing contacts.

References

1.
Noël
,
J. P.
, and
Kerschen
,
G.
,
2017
, “
Nonlinear System Identification in Structural Dynamics: 10 More Years of Progress
,”
Mech. Syst. Signal Process.
,
83
, pp.
2
35
.10.1016/j.ymssp.2016.07.020
2.
Pacyna
,
L.
,
Bertret
,
A.
,
Derclaye
,
A.
,
Papeleux
,
L.
, and
Ponthot
,
J.-P.
,
2020
, “
Implementation of a Rig Test for Rotor/Stator Interaction of Low-Pressure Compressor Blades and Comparison of Experimental Results With Numerical Model
,”
ASME
Paper No. GT2020-14266.10.1115/GT2020-14266
3.
Krack
,
M.
,
Salles
,
L.
, and
Thouverez
,
F.
,
2017
, “
Vibration Prediction of Bladed Disks Coupled by Friction Joints
,”
Arch. Comput. Methods Eng.
,
24
(
3
), pp.
589
636
. 10.1007/s11831-016-9183-2
4.
Petrov
,
E. P.
,
2012
, “
Multiharmonic Analysis of Nonlinear Whole Engine Dynamics With Bladed Disc-Casing Rubbing Contacts
,”
ASME
Paper No. GT2012-68474.10.1115/GT2012-68474
5.
Firrone
,
C. M.
,
Zucca
,
S.
, and
Gola
,
M. M.
,
2011
, “
The Effect of Underplatform Dampers on the Forced Response of Bladed Disks by a Coupled Static/Dynamic Harmonic Balance Method
,”
Int. J. Non-Linear Mech.
,
46
(
2
), pp.
363
375
.10.1016/j.ijnonlinmec.2010.10.001
6.
Prabith
,
K.
, and
Krishna
,
I. R. P.
,
2020
, “
The Numerical Modeling of Rotor–Stator Rubbing in Rotating Machinery: A Comprehensive Review
,”
Nonlinear Dyn.
,
101
(
2
), pp.
1317
1363
.10.1007/s11071-020-05832-y
7.
Ma
,
H.
,
Yin
,
F.
,
Guo
,
Y.
,
Tai
,
X.
, and
Wen
,
B.
,
2016
, “
A Review on Dynamic Characteristics of Blade–Casing Rubbing
,”
Nonlinear Dyn.
,
84
(
2
), pp.
437
472
.10.1007/s11071-015-2535-x
8.
Pourkiaee
,
S. M.
, and
Zucca
,
S.
,
2019
, “
A Reduced Order Model for Nonlinear Dynamics of Mistuned Bladed Disks With Shroud Friction Contacts
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p. 011031.10.1115/1.4041653
9.
Millecamps
,
A.
,
Brunel
,
J.-F.
,
Dufrenoy
,
P.
,
Garcin
,
F.
, and
Nucci
,
M.
,
2009
, “
Influence of Thermal Effects During Blade-Casing Contact Experiments
,”
ASME
Paper No. DETC2009-86842.10.1115/DETC2009-86842
10.
Padova
,
C.
,
Barton
,
J.
,
Dunn
,
M.
, and
Manwaring
,
S.
,
2007
, “
Experimental Results From Controlled Blade Tip-Shroud Rubs at Engine Speed
,”
ASME J. Turbomach.
,
129
(
4
), pp.
713
723
.10.1115/1.2720869
11.
Agromayor
,
R.
,
Anand
,
N.
,
Müller
,
J.-D.
,
Pini
,
M.
, and
Nord
,
L. O.
,
2021
, “
A Unified Geometry Parametrization Method for Turbomachinery Blades
,”
Comput.-Aided Des.
,
133
, p.
102987
.10.1016/j.cad.2020.102987
12.
Zhou
,
Y.
,
Song
,
Y.
,
Xing
,
T.
,
Wang
,
Y.
,
Zhang
,
Q.
,
Shao
,
L.
,
Du
,
F.
, and
Ding
,
S.
,
2021
, “
Parametric Modeling Method for Integrated Design and Manufacturing of Radial Compressor Impeller
,”
Int. J. Adv. Manuf. Technol.
,
112
(
3–4
), pp.
1007
1021
.10.1007/s00170-020-06331-5
13.
Piollet
,
E.
,
Nyssen
,
F.
, and
Batailly
,
A.
,
2019
, “
Blade/Casing Rubbing Interactions in Aircraft Engines: Numerical Benchmark and Design Guidelines Based on Nasa Rotor 37
,”
J. Sound Vib.
,
460
, p.
114878
.10.1016/j.jsv.2019.114878
14.
Hulme
,
C. J.
,
Fiebiger
,
S. W.
, and
Szwedowicz
,
J.
,
2015
, “
Axial Compressor Blade Failure, Design Modification, and Its Validation
,”
ASME
Paper No. GT2015-43312.10.1115/GT2015-43312
15.
Nitschke
,
S.
,
Wollmann
,
T.
,
Ebert
,
C.
,
Behnisch
,
T.
,
Langkamp
,
A.
,
Lang
,
T.
,
Johann
,
E.
, and
Gude
,
M.
,
2019
, “
An Advanced Experimental Method and Test Rig Concept for Investigating the Dynamic Blade-Tip/Casing Interactions Under Engine-Like Mechanical Conditions
,”
Wear
,
422–423
, pp.
161
166
.10.1016/j.wear.2018.12.072
16.
Batailly
,
A.
,
Legrand
,
M.
,
Millecamps
,
A.
,
Cochon
,
S.
, and
Garcin
,
F.
,
2015
, “
Redesign of a High-Pressure Compressor Blade Accounting for Nonlinear Structural Interactions
,”
ASME J. Eng. Gas Turbines Power
,
137
(
2
), p.
022502
.10.1115/1.4028263
17.
Batailly
,
A.
, and
Millecamps
,
A.
,
2016
, “
Minimising Clearance Consumption: A Key Factor for the Design of Blades Robust to Rotor/Stator Interactions?
,”
ASME
Paper No. GT2016-56721.10.1115/GT2016-56721
18.
Lainé
,
J.
,
Piollet
,
E.
,
Nyssen
,
F.
, and
Batailly
,
A.
,
2019
, “
Blackbox Optimization for Aircraft Engine Bladed Components Featuring Contact Interfaces
,”
ASME J. Eng. Gas Turbines Power
,
141
(
6
), p. 061016.10.1115/1.4042808
19.
Le Digabel
,
S.
,
2011
, “
Algorithm 909: NOMAD: Nonlinear Optimization With the MADS Algorithm
,”
ACM Trans. Math. Software
,
37
(
4
), pp.
1
15
.10.1145/1916461.1916468
20.
Audet
,
C.
, and
Dennis
,
J. E.
, Jr.,
2006
, “
Mesh Adaptive Direct Search Algorithms for Constrained Optimization
,”
SIAM J. Optim.
,
17
(
1
), pp.
188
217
.10.1137/040603371
21.
Piollet
,
E.
, and
Batailly
,
A.
,
2019
, “
A Program to Compute Compressor Blade Geometries From Multiple-Circular-Arc Parameters With Sweep and Lean (v1.0)[Source Code]
,” HAL, accessed Sept. 30, 2022, https://hal.archives-ouvertes.fr/hal-02127993
22.
Colaïtis
,
Y.
, and
Batailly
,
A.
,
2021
, “
Development of a Harmonic Balance Method-Based Numerical Strategy for Blade-Tip/Casing Interactions: Application to NASA Rotor 37
,”
ASME J. Eng. Gas Turbines Power
, 143(11), p. 111025.10.1115/1.4051967
23.
Batailly
,
A.
,
Legrand
,
M.
,
Millecamps
,
A.
, and
Garcin
,
F.
,
2012
, “
Numerical-Experimental Comparison in the Simulation of Rotor/Stator Interaction Through Blade-Tip/Abradable Coating Contact
,”
ASME J. Eng. Gas Turbines Power
,
134
(
8
), p.
082504
.10.1115/1.4006446
24.
Craig
,
R. R.
, and
Bampton
,
M. C. C.
,
1968
, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
.10.2514/3.4741
25.
Urasek
,
D. C.
,
Cunnan
,
W. S.
, and
Stevans
,
W.
,
1979
, “
Performance of Two-Stage Fan With Larger Dampers on First-Stage Rotor
,” NASA, NASA Lewis Research Center, Cleveland, OH, Report No.
NASA-TP-1399
.https://ntrs.nasa.gov/citations/19790015796
26.
Colaïtis
,
Y.
,
2021
, “
Stratégie Numérique Pour L'analyse Qualitative Des Interactions Aube/Carter
,” Ph.D. thesis,
École Polytechnique de Montréal
, Montréal, QC, Canada.
You do not currently have access to this content.