Abstract

Low emission aircraft engines burn in a lean regime, which makes the combustor susceptible to unsteady combustion. Along with improper mixing and air cooling, the unsteady combustion process gives rise to flow inhomogeneities. The acceleration of these inhomogeneities in the nozzle downstream of the combustor generates indirect combustion noise. If the acoustic waves that are reflected off the nozzle are sufficiently in phase with the heat released by the flame, thermoacoustic instabilities can occur. The generation and transmission of sound through the nozzle guide vane are typically modeled with a compact and isentropic nozzle model. Because the flow is non-isentropic due to losses from wall friction and recirculation zones, in the literature, a mismatch is observed between experimental and theoretical predictions in subsonic-choked regimes. In this work, we propose a low-order physical model to predict indirect noise in a multicomponent nozzle flow with dissipation using conservation laws whilst modeling non-isentropicity using a friction factor. The model is generalized for finite-length (non-compact) arbitrary geometry nozzles. We show that the friction factor can account for wall friction and two (or three) dimensional effects, such as flow recirculation in a cross-averaged sense. We analyze the model numerically for both subsonic and supersonic nozzles, emphasizing the importance of non-isentropic and non-compact assumptions with compositional inhomogeneities. Further, we show the effect of the nozzle geometry. The results are validated with existing experimental data from the literature.

References

1.
Correa
,
S. M.
,
1998
, “
Power Generation and Aeropropulsion Gas Turbines: From Combustion Science to Combustion Technology
,”
Symp. (Int.) Combust.
,
27
(
2
), pp.
1793
1807
.10.1016/S0082-0784(98)80021-0
2.
Hansell
,
A. L.
,
Blangiardo
,
M.
,
Fortunato
,
L.
,
Floud
,
S.
,
de Hoogh
,
K.
,
Fecht
,
D.
,
Ghosh
,
R. E.
, et al.,
2013
, “
Aircraft Noise and Cardiovascular Disease Near Heathrow Airport in London: Small Area Study
,”
BMJ
,
347
, pp.
f5432
f5432
.10.1136/bmj.f5432
3.
Strahle
,
W. C.
,
1976
, “
Noise Produced by Fluid Inhomogeneities
,”
AIAA J.
,
14
(
7
), pp.
985
987
.10.2514/3.7178
4.
Marble
,
F.
, and
Candel
,
S.
,
1977
, “
Acoustic Disturbance From Gas Non-Uniformities Convected Through a Nozzle
,”
J. Sound Vib.
,
55
(
2
), pp.
225
243
.10.1016/0022-460X(77)90596-X
5.
Cumpsty
,
N.
,
1979
, “
Jet Engine Combustion Noise: Pressure, Entropy and Vorticity Perturbations Produced by Unsteady Combustion or Heat Addition
,”
J. Sound Vib.
,
66
(
4
), pp.
527
544
.10.1016/0022-460X(79)90697-7
6.
Polifke
,
W.
,
Paschereit
,
C. O.
, and
Döbbeling
,
K.
,
2001
, “
Constructive and Destructive Interference of Acoustic and Entropy Waves in a Premixed Combustor With a Choked Exit
,”
Int. J. Acoust. Vib
,
6
(
3
), pp.
135
146
.https://www.researchgate.net/profile/Wolfgang-Polifke/publication/255738673_Constructive_and_Destructive_Interference_of_Acoustic_and_Entropy_Waves_in_a_Premixed_Combustor_with_a_Choked_Exit/links/0a85e53cb5ebe71fcf000000/Destructive-Interference-of-Acoustic-and-Entropy-Waves-in-a-Premixed-Combustor-with-a-Choked-Exit.pdf
7.
Sattelmayer
,
T.
,
2003
, “
Influence of the Combustor Aerodynamics on Combustion Instabilities From Equivalence Ratio Fluctuations
,”
ASME J. Eng. Gas Turbines Power
,
125
(
1
), pp.
11
19
.10.1115/1.1365159
8.
Goh
,
C. S.
, and
Morgans
,
A. S.
,
2013
, “
The Influence of Entropy Waves on the Thermoacoustic Stability of a Model Combustor
,”
Combust. Sci. Technol.
,
185
(
2
), pp.
249
268
.10.1080/00102202.2012.715828
9.
Duran
,
I.
, and
Moreau
,
S.
,
2013
, “
Solution of the Quasi-One-Dimensional Linearized Euler Equations Using Flow Invariants and the Magnus Expansion
,”
J. Fluid Mech.
,
723
, pp.
190
231
.10.1017/jfm.2013.118
10.
Motheau
,
E.
,
Nicoud
,
F.
, and
Poinsot
,
T.
,
2014
, “
Mixed Acoustic–Entropy Combustion Instabilities in Gas Turbines
,”
J. Fluid Mech.
,
749
, pp.
542
576
.10.1017/jfm.2014.245
11.
Morgans
,
A. S.
, and
Duran
,
I.
,
2016
, “
Entropy Noise: A Review of Theory, Progress and Challenges
,”
Int. J. Spray Combust. Dyn.
,
8
(
4
), pp.
285
298
.10.1177/1756827716651791
12.
Magri
,
L.
,
O'Brien
,
J.
, and
Ihme
,
M.
,
2016
, “
Compositional Inhomogeneities as a Source of Indirect Combustion Noise
,”
J. Fluid Mech.
,
799
, p. R4.10.1017/jfm.2016.397
13.
Giusti
,
A.
,
Magri
,
L.
, and
Zedda
,
M.
,
2019
, “
Flow Inhomogeneities in a Realistic Aeronautical Gas-Turbine Combustor: Formation, Evolution, and Indirect Noise
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p. 011502.10.1115/1.4040810
14.
Magri
,
L.
,
2017
, “
On Indirect Noise in Multicomponent Nozzle Flows
,”
J. Fluid Mech.
,
828
, p. R2.10.1017/jfm.2017.591
15.
Dowling
,
A. P.
, and
Mahmoudi
,
Y.
,
2015
, “
Combustion Noise
,”
Proc. Combust. Inst.
,
35
(
1
), pp.
65
100
.10.1016/j.proci.2014.08.016
16.
Cumpsty
,
N.
, and
Marble
,
F.
,
1977
, “
Core Noise From Gas Turbine Exhausts
,”
J. Sound Vib.
,
54
(
2
), pp.
297
309
.10.1016/0022-460X(77)90031-1
17.
Leyko
,
M.
,
Nicoud
,
F.
, and
Poinsot
,
T.
,
2009
, “
Comparison of Direct and Indirect Combustion Noise Mechanisms in a Model Combustor
,”
AIAA J.
,
47
(
11
), pp.
2709
2716
.10.2514/1.43729
18.
Magri
,
L.
,
O'Brien
,
J.
, and
Ihme
,
M.
,
2018
, “
Effects of Nozzle Helmholtz Number on Indirect Combustion Noise by Compositional Perturbations
,”
ASME J. Eng. Gas Turbines Power
,
140
(
3
), p. 031501.10.1115/1.4037914
19.
Lieuwen
,
T. C.
,
2012
,
Acoustic Wave Propagation II – Heat Release, Complex Geometry, and Mean Flow Effects
,
Cambridge University Press
, Cambridge, UK, pp.
154
198
.
20.
Rolland
,
E.
,
De Domenico
,
F.
, and
Hochgreb
,
S.
,
2017
, “
Theory and Application of Reverberated Direct and Indirect Noise
,”
J. Fluid Mech.
,
819
, pp.
435
464
.10.1017/jfm.2017.183
21.
Rolland
,
E. O.
,
De Domenico
,
F.
, and
Hochgreb
,
S.
,
2018
, “
Direct and Indirect Noise Generated by Entropic and Compositional Inhomogeneities
,”
ASME J. Eng. Gas Turbines Power
,
140
(
8
), p. 082604.10.1115/1.4039050
22.
De Domenico
,
F.
,
Rolland
,
E. O.
, and
Hochgreb
,
S.
,
2019
, “
A Generalised Model for Acoustic and Entropic Transfer Function of Nozzles With Losses
,”
J. Sound Vib.
,
440
, pp.
212
230
.10.1016/j.jsv.2018.09.011
23.
De Domenico
,
F.
,
Rolland
,
E. O.
, and
Hochgreb
,
S.
,
2017
, “
Detection of Direct and Indirect Noise Generated by Synthetic Hot Spots in a Duct
,”
J. Sound Vib.
,
394
, pp.
220
236
.10.1016/j.jsv.2017.01.004
24.
De Domenico
,
F.
,
Rolland
,
E. O.
, and
Hochgreb
,
S.
,
2017
, “
Measurements of the Effect of Boundary Conditions on Upstream and Downstream Noise Arising From Entropy Spots
,”
ASME
Paper No. GT2017-64378.10.1115/GT2017-64378
25.
Jain
,
A.
, and
Magri
,
L.
,
2022
, “
A Physical Model for Indirect Noise in Non-Isentropic Nozzles: Transfer Functions and Stability
,”
J. Fluid Mech.
,
935
, p.
A33
.10.1017/jfm.2022.27
26.
De Domenico
,
F.
,
Rolland
,
E. O.
,
Rodrigues
,
J.
,
Magri
,
L.
, and
Hochgreb
,
S.
,
2021
, “
Compositional and Entropy Indirect Noise Generated in Subsonic Non-Isentropic Nozzles
,”
J. Fluid Mech.
,
910
, p. A5.10.1017/jfm.2020.916
27.
Chiu
,
H.
, and
Summerfield
,
M.
,
1974
, “
Theory of Combustion Noise
,”
Acta Astronaut.
,
1
(
7–8
), pp.
967
984
.10.1016/0094-5765(74)90063-0
28.
Shapiro
,
A. H.
,
1953
,
The Dynamics and Thermodynamics of Compressible Fluid Flow
, Ronald Press, New York
.
29.
Bloxsidge
,
G.
,
Dowling
,
A.
, and
Langhorne
,
P.
,
1988
, “
Reheat Buzz: An Acoustically Coupled Combustion Instability. Part 2. Theory
,”
J. Fluid Mech.
,
193
(
-1
), pp.
445
473
.10.1017/S0022112088002216
30.
Magri
,
L.
,
2019
, “
Adjoint Methods as Design Tools in Thermoacoustics
,”
Appl. Mech. Rev.
,
71
(
2
), p. 020801.10.1115/1.4042821
31.
Aguilar
,
J. G.
,
Magri
,
L.
, and
Juniper
,
M. P.
,
2017
, “
Adjoint-Based Sensitivity Analysis of Low-Order Thermoacoustic Networks Using a Wave-Based Approach
,”
J. Comput. Phys.
,
341
, pp.
163
181
.10.1016/j.jcp.2017.04.013
32.
Rayleigh
,
J. W.
, and
Strutt
,
B.
,
1896
,
The Theory of Sound
, Vol.
2
,
Macmillan
, London, UK.
You do not currently have access to this content.