Abstract

This paper is a continuation of previous papers by the authors that focuses on predicting the mistuned embedded rotor blade forced response. The compressor under consideration is a part of a 3.5stage rig located at Purdue University. Previously, the current authors have discussed the impact of sideband traveling wave forcing functions on the mistuned response and pinned down the reason for a constant underprediction in the amplification factor. This prompted further research to determine the sensitivity of the response to a known change in the system mode. In the first section of the current paper, the authors perturb the system modes frequencies in a probabilistic manner and compute the influence of the system mode on the mistuning amplification factor. The second part of this study involves determining the impact of a perturbation in the structural damping on the mistuned response. The study is also extended to an aerodynamic dynamic analysis wherein the impact of a perturbation in system mode frequency and structural damping is determined both individually and as a combined influence. Finally, a brief investigation of system eigenvalues and eigenvectors is conducted to understand the impact of mistuning on aerodynamic damping suppression. This analysis is joined with a broad examination of the relationship between damping and the extent of mistuning. The key conclusions from this paper are (1) the mistuned forced response was highly sensitive to the system mode input, i.e., although the input was probabilistic, the output was deterministic, (2) since the aerodynamic damping dominates in the case study, a change in the structural damping parameter has minimal effect on the mistuned response, particularly the mistuning amplification factor, (3) the results of the flutter analysis show that a perturbation in the system mode frequency stabilizes the system much faster than a perturbation in the structural damping, and the latter has minimal influence on the eigenvalues of the solution, (4) under the application of mistuning, compression of the damping components of the complex eigenvalues is dominant over the expansion of the frequency components and is amplified when the structural coupling is not considered, and (5) in cases of both random and near alternate blade mistuning, the relationship between mistuning and damping is positive up to a point, after which further increasing mistuning begins to reduce system damping.

References

1.
Besem
,
F. M.
,
Kielb
,
R. E.
,
Galpin
,
P.
,
Zori
,
L.
, and
Key
,
N. L.
,
2016
, “
Mistuned Forced Response Predictions of an Embedded Rotor in a Multistage Compressor
,”
ASME J. Turbomach.
,
138
(
6
), pp.
106
115
.10.1115/1.4032164
2.
Besem
,
F. M.
,
Kielb
,
R. E.
, and
Key
,
N. L.
,
2016
, “
Forced Response Sensitivity of a Mistuned Rotor From an Embedded Compressor Stage
,”
ASME J. Turbomach.
,
138
(
3
), pp.
103
113
.10.1115/1.4031866
3.
Giles
,
M.
,
1988
, “
Calculation of Unsteady Wake/Rotor Interaction
,”
J. Propul. Power
,
4
(
4
), pp.
356
362
.10.2514/3.23074
4.
Hall
,
K. C.
, Private Communication.
5.
Srinivasan
,
A. V.
,
1997
, “
Flutter and Resonant Vibration Characteristics of Engine Blades
,”
ASME J. Eng. Gas Turbines Power
,
119
(
4
), pp.
742
775
.10.1115/1.2817053
6.
Feiner
,
D.
, and
Griffin
,
J.
,
2004
, “
Mistuning Identification of Bladed Disks Using a Fundamental Mistuning Model-Part 1: Theory
,”
ASME J. Turbomach.
,
126
(
1
), pp.
159
165
.10.1115/1.1643914
7.
Kielb
,
R.
, and
Kaza
,
K.
,
1984
, “
Effects of Structural Coupling on Mistuned Cascade Flutter and Response
,”
ASME J. Eng. Gas Turbines Power
,
106
(
1
), pp.
17
24
.10.1115/1.3239532
8.
Hall
,
K. C.
,
Thomas
,
J. P.
, and
Clark
,
W. S.
,
2002
, “
Computation of Unsteady Nonlinear Flows in Cascades Using a Harmonic Balance Technique
,”
AIAA J.
,
40
(
5
), pp.
879
886
.10.2514/2.1754
9.
Hegde
,
S.
,
Kielb
,
R.
,
Zori
,
L.
, and
Campregher
,
R.
, “
Impact of Multi-Row Aerodynamic Interaction on the Forced Response Behaviour of an Embedded Compressor Rotor
,”
ASME
Paper No. GT2020-14482.10.1115/GT2020-14482
10.
Hegde
,
S.
,
Kielb
,
R.
,
Zori
,
L.
, and
Campregher
,
R.
,
2021
, “
Influence of Stator Hub Cavities on the Forced Response Behaviour of an Embedded Compressor Rotor
,”
ASME
Paper No. GT2021-58779.10.1115/GT2021-58779
11.
Hegde
,
S.
,
Madden
,
A.
, and
Kielb
,
R.
,
2021
, “
Influence of Disc Modes and Sideband Excitations on the Mistuned Forced Response Behaviour of an Embedded Compressor Rotor
,”
ASME
Paper No. GT2021-58780.10.1115/GT2021-58780
12.
Hegde
,
S.
, and
Kielb
,
R.
,
2021
, “
Mistuned Forced Response Sensitivity of an Embedded Compressor Rotor: Effect of Sideband Travelling Wave Excitations
,”
AIAA
Paper No. AIAA 2021-1224.10.2514/6.AIAA 2021-1224
13.
Hegde
,
S.
,
Mao
,
Z.
,
Pan
,
T.
,
Zori
,
L.
,
Campregher
,
R.
, and
Kielb
,
R.
,
2019
, “
Separation of Up and Downstream Forced Response Excitations of an Embedded Compressor Rotor
,”
ASME J. Turbomach.
,
141
(
9
), p.
091013
.10.1115/1.4044212
14.
Hegde
,
S.
,
Zori
,
L.
,
Campregher
,
R.
, and
Kielb
,
R.
,
2021
, “
Separation of Wake and Potential Field Excitations in an Embedded Compressor Rotor: Impact of Wave Reflections and Mistuning on Forced Response
,”
AIAA
Paper No. AIAA 2021-0265.10.2514/6.AIAA 2021-0265
15.
Hegde
,
S.
,
2021
, “
Multi-Row Aeromechanical and Aeroelastic Aspects of Embedded Gas Turbine Compressor Rotors
,”
Ph.D. dissertation
,
Duke University
, Durham, NC.https://dukespace.lib.duke.edu/dspace/handle/10161/24353
16.
Li
,
J.
,
2016
, “
Multi-Row Interactions and Mistuned Forced Response of an Embedded Compressor Rotor
,” Ph.D. thesis,
Duke University
, Durham, NC.
17.
Key
,
N.
,
Lawless
,
P.
, and
Fleeter
,
S.
,
2009
, “
Vane Clocking in a Three-Stage Compressor: Frequency Domain Data Analysis
,”
AIAA J. Propul. Power
,
25
(
5
), pp.
1100
1107
.10.2514/1.43423
18.
Lee
,
D.
,
Orkwis
,
P. D.
,
Tsung
,
F.-L.
,
Magnuszewski
,
W.
,
Noll
,
C.
, and
McNulty
,
G. S.
,
2013
, “
Tip Flow Unsteadiness and Blade Row Interactions for a Low-Speed Compressor Rotor
,”
J. Propul. Power
,
29
(
6
), pp.
1346
1356
.10.2514/1.B34599
19.
Lange
,
M.
,
Rolfes
,
M.
,
Mailach
,
R.
, and
Schrapp
,
H.
,
2013
, “
Periodic Unsteady Tip Clearance Vortex Development in a Low Speed Axial Research Compressor at Different Tip Clearances
,”
ASME
Paper No. GT2017-64256.10.1115/GT2017-64256
20.
Li
,
J.
,
Aye-Addo
,
N.
,
Kielb
,
R.
, and
Key
,
N.
,
2017
, “
Mistuned Higher-Order Mode Forced Response of an Embedded Compressor Rotor—Part II: Mistuned Forced Response Prediction
,”
ASME. J. Turbomach.
,
140
(
3
), p.
031006
.10.1115/1.4038519
21.
Li
,
J.
, and
Kielb
,
R.
, “
Forcing Superposition and Decomposition of an Embedded Compressor Rotor
,”
ASME
Paper No. GT2017-64657.10.1115/GT2017-64657
22.
Owczarek
,
J. A.
,
1984
, “
Analysis of an Axial Compressor Blade Vibration Based on Wave Reflection Theory
,”
ASME J. Eng. Gas Turbines Power
,
106
(
1
), pp.
57
64
.10.1115/1.3239551
23.
Owczarek
,
J. A.
,
2011
, “
On the Phenomenon of Pressure Pulses Reflecting Between Adjacent Blade Rows of Turbomachines
,”
ASME J. Turbomach.
,
133
(
2
), p.
021016
.10.1115/1.4001185
24.
Petrov
,
E. P.
,
2010
, “
A Method for Forced Response Analysis of Mistuned Bladed Disks With Aerodynamic Effects Included
,”
ASME J. Eng. Gas Turbines Power
,
132
(
6
), p.
062502
.10.1115/1.4000117
25.
Qizar
,
M.
,
Mansour
,
M.
, and
Goswami
,
S.
,
2013
, “
Study of Steady-State and Transient Blade Row CFD Methods in a Moderately Loaded NASA Transonic High-Speed Axial Compressor Stage
,”
ASME
Paper No. GT2013-94739.10.1115/GT2013-94739
26.
Rahmati
,
M. T.
,
He
,
L. L.
, and
Li
,
Y. S.
,
2015
, “
The Blade Profile Orientations Effects on the Aeromechanics of Multirow Turbomachines 2015
,”
ASME J. Eng. Gas Turbines Power
,
138
(
6
), p.
062606
.10.1115/1.4030569
27.
Rahmati
,
M. T.
,
He
,
L. L.
,
Wang
,
D. X.
,
Li
,
Y. S.
,
Wells
,
R. G.
, and
Krishnababu
,
S. K.
,
2014
, “
Nonlinear Time and Frequency Domain Methods for Multirow Aeromechanical Analysis
,”
ASME J. Turbomach.
,
136
(
4
), p.
041010
.10.1115/1.4024899
28.
Schoenenborn
,
H.
,
2018
, “
Analysis of the Effect of Multirow and Multi-Passage Aerodynamic Interaction on the Forced Response Variation in a Compressor Configuration—Part I: Aerodynamic Excitation
,”
ASME. J. Turbomach.
,
140
(
5
), p.
051004
.10.1115/1.4038868
29.
Ekici
,
K.
, and
Hall
,
K. C.
,
2008
, “
Nonlinear Frequency-Domain Analysis of Unsteady Flows in Turbomachinery With Multiple Excitation Frequencies
,”
AIAA J.
,
46
(
8
), pp.
1912
1920
.10.2514/1.26006
30.
Ekici
,
K.
,
Kielb
,
R.
, and
Hall
,
K.
,
2010
, “
Forced Response Analysis of Aerodynamically Asymmetric Cascades
,”
AIAA
Paper No. 2010-6535.10.2514/6.2010-6535
31.
Campobasso
,
S.
, and
Giles
,
M.
,
2000
, “
Analysis of the Effect of Mistuning on Turbomachinery Aeroelasticity
,”
ISUAAAT
, Lyon, France, Sept.
7
11
.http://people.maths.ox.ac.uk/~gilesm/files/isuaaat01.pdf
32.
Smith
,
N. R.
,
Murray
,
W. L.
, III
, and
Key
,
N. L.
,
2015
, “
Considerations for Measuring Compressor Aerodynamic Excitations Including Rotor Wakes and Tip Leakage Flows
,”
ASME
Paper No. GT2015-43508.10.1115/GT2015-43508
33.
Whitehead
,
D. S.
,
1966
, “
Effect of Mistuning on the Vibration of Turbomachine Blades Induced by Wakes
,”
J. Mech. Eng. Sci.
,
8
(
1
), pp.
15
21
.10.1243/JMES_JOUR_1966_008_004_02
34.
Berdanier
,
R. A.
, and
Key
,
N. L.
,
2016
, “
Experimental Characterization of Tip Leakage Flow Trajectories in a Multistage Compressor
,”
AIAA J. Propul. Power
,
32
(
4
), pp.
1022
1032
.10.2514/1.B35929
35.
Fulayter
,
R. D.
,
2004
, “
An Experimental Investigation of Resonant Response of Mistuned Fan and Compressor Rotors Utilizing NSMS
,”
Ph.D. thesis
,
Purdue University
,
West Lafayette, IN
.https://docs.lib.purdue.edu/dissertations/AAI3150762/
36.
Zori
,
L.
,
Galpin
,
P.
,
Campregher
,
R.
, and
Morales
,
J. C.
, “
Time-Transformation Simulation of a 1.5 Stage Transonic Compressor
,”
ASME J. Turbomach.
,
139
(
7
), p.
071001
.10.1115/1.4035450
37.
Mao
,
Z.
,
Hegde
,
S.
,
Pan
,
T.
,
Kielb
,
R.
,
Zori
,
L.
, and
Campregher
,
R.
,
2018
, “
Investigation of the Effect of Wave Reflection in the Forced Response Study of a Compressor
,”
Proceedings of Global Power and Propulsion Conference (GPPS)
, Montreal, QC, Canada.https://www.researchgate.net/publication/326741500_Investigation_of_the_Effect_of_Wave_Reflection_in_the_Forced_Response_Study_of_a_Compressor
38.
Mao
,
Z.
,
Hegde
,
S.
,
Pan
,
T.
,
Kielb
,
R. E.
,
Zori
,
L.
, and
Campregher
,
R.
,
2018
, “
Influence of Rotor-Stator Interaction and Reflecting Boundary Conditions on Compressor Forced Response
,”
ASME
Paper No. GT2018-75232.10.1115/GT2018-75232
You do not currently have access to this content.