Abstract

Solution-based mesh adaption approaches have been widely studied and tested by different research groups to generate the required finer meshes in the critical regions on the fly while keeping the overall mesh count to a manageable level. However, these approaches are typically applicable for a set of problems, and therefore, there is a need for a generic approach suitable for a broader range of problems. This work explores various parameters and specific weightage factors to predict correct flame-tracking outcomes for different types of flames. The selections of flow quantities (flow variables, their gradients, curvatures) are performed using simple flames and flow configurations. The functions based on selected flow-quantities derived from these studies are then tested to predict the results for the more complex set of published flames like the Engine Combustion Network (ECN) spray flame and Knowledge for Ignition, Acoustics, and Instabilities (KIAI) five-burner configuration (liquid and gas fuel). Derived adaption criteria are found to predict the correct flame tracking behavior in terms of transient evolution of flame front, flame propagation, and ignition timing of burners. The parameters used for the study are identified keeping genericity as the key point, and thus making sure that the derived adaption functions can be applied across different types of fuel blends, combustion systems (gaseous or liquid fuel-based systems) and combustion models, for example, species transport or mixture fraction-based models.

References

1.
Berger
,
M. J.
, and
Oliger
,
J.
,
1984
, “
Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations
,”
J. Comput. Phys.
,
53
(
3
), pp.
484
512
.10.1016/0021-9991(84)90073-1
2.
Braack
,
M.
, and
Ern
,
A.
,
2004
, “
Coupling Multimodelling With Local Mesh Refinement for the Numerical Computation of Laminar Flames
,”
Combust. Theory Model.
,
8
(
4
), pp.
771
788
.10.1088/1364-7830/8/4/006
3.
Venuturumilli
,
R.
, and
Chen
,
L. D.
,
2004
, “
Numerical Simulation Using Adaptive Mesh Refinement for Laminar Jet Diffusion Flames
,”
Numer. Heat Transfer, Part B
,
46
(
2
), pp.
101
120
.10.1080/10407790490449507
4.
Naamansen
,
P.
,
Baraldi
,
D.
,
Hjertager
,
B. H.
,
Solberg
,
T.
, and
Cant
,
S.
,
2002
, “
Solution Adaptive CFD Simulation of Premixed Flame Propagation Over Various Solid Obstructions
,”
J. Loss Prev. Process Ind.
,
15
(
3
), pp.
189
197
.10.1016/S0950-4230(02)00006-2
5.
Qingluan
,
X.
, “
Development of Adaptive Mesh Refinement Scheme and Conjugate Heat Transfer Model for Engine Simulations
,”
Ph.D. thesis
,
Normandie Université, Iowa State University
, Ames, IA.10.31274/etd-180810-1589
6.
Cai
,
X.
,
Liang
,
J.
,
Deiterding
,
R.
,
Che
,
Y.
, and
Lin
,
Z.
,
2016
, “
Adaptive Mesh Refinement Based Simulations of Three-Dimensional Detonation Combustion in Supersonic Combustible Mixtures With a Detailed Reaction Model
,”
Int. J. Hydrogen Energy
,
41
(
4
), pp.
3222
3239
.10.1016/j.ijhydene.2015.11.093
7.
Ansys, 2022, “Fluent Theory Guide,” Ansys, Inc.,
Canonsburg, PA, accessed Feb. 25, 2022, https://www.ansys.com
8.
Xiao
,
H.
,
Wang
,
Q.
,
He
,
X.
,
Sun
,
J.
, and
Yao
,
L.
,
2010
, “
Experimental and Numerical Study on Premixed Hydrogen/Air Flame Propagation in a Horizontal Rectangular Closed Duct
,”
Int. J. Hydrogen Energy
,
35
(
3
), pp.
1367
1376
.10.1016/j.ijhydene.2009.12.001
9.
Li
,
J.
,
Zhao
,
Z.
,
Kazakov
,
A.
, and
Dryer
,
F. L.
,
2004
, “
An Updated Comprehensive Kinetic Model for H2 Combustion
,”
Int. J. Chem. Kinet.
, 36, pp.
566
575
.10.1002/kin.20026
10.
Pickett, L. M., 2008, “Introducing the Engine Combustion Network,” Fuel Spray Work Shop 2008, Detroit, MI, accessed Feb. 25, 2022, http://icel.tkk.fi/FSWS2008/SprayWorkshopDetroit2008_Pickett.pdf
11.
Pickett
,
L. M.
,
Genzale
,
C. L.
,
Bruneaux
,
G.
,
Malbec
,
L.-M.
,
Hermant
,
L.
,
Christiansen
,
C.
, and
Schramm
,
J.
,
2010
, “
Comparison of Diesel Spray Combustion in Different High-temperature, High-Pressure Facilities
,”
SAE Int. J. Engines
,
3
(
2
), pp.
156
181
.10.4271/2010-01-2106
12.
Sandia National Laboratories, 2022, “ECN Spray A Operating Condition,” Sandia National Laboratories, Albuquerque, NM, accessed Feb. 25, 2022, https://ecn.sandia.gov/diesel-spray-combustion/target-condition/spray-ab/
13.
Som
,
S.
,
Longman
,
D.
,
Luo
,
Z.
,
Plomer
,
M.
, and
Lu
,
T.
,
2011
, “
Three Dimensional Simulations of Diesel Sprays Using n-Dodecane as a Surrogate
,” Fall Technical Meeting of the Eastern States Section of the Combustion Institute, University of Connecticut, Storrs, CT, Oct.
9
12
.
14.
Driscoll
,
J. F.
, and
Temme
,
J.
,
2011
, “
Role of Swirl in Flame Stabilization
,”
AIAA
Paper No. 2011-108.10.2514/6.2011-108
15.
David Barre, M., 2014, “Simulation Numerique De L'allumage Dans Les Chambres De Combustion Aeronautiques,”
Ph.D. thesis
, Université de Toulouse, Toulouse, France.https://core.ac.uk/download/78384033.pdf
16.
Barré
,
D.
,
Esclapez
,
L.
,
Cordier
,
M.
,
Riber
,
E.
,
Cuenot
,
B.
,
Staffelbach
,
G.
,
Renou
,
B.
,
Vandel
,
A.
,
Gicquel
,
L.
, and
Cabot
,
G.
,
2014
, “
Flame Propagation in Aeronautical Swirled Multi-Burners: Experimental and Numerical Investigation
,”
Combust. Flame
,
161
(
9
), pp.
2387
2405
.10.1016/j.combustflame.2014.02.006
17.
Kazakov, A., Frenklach, F., “DRM22 Mechanism,” University of California, Berkeley, CA, accessed Feb. 25, 2022, http://combustion.berkeley.edu/drm/
18.
Nakod
,
P.
,
Shrivastava
,
S.
,
Patwardhan
,
S.
,
Orsino
,
S.
, and
Yadav
,
R.
,
2019
, “
Numerical Investigation of Ignition Sequence in a Multi-Burner Methane-Air Swirl Combustor Using Flamelet Generated Manifold Combustion Model
,”
ASME
Paper No. GT2019-90339.10.1115/GT2019-90339
19.
Marrero Santiago, J., 2018, “Experimental Study of Lean Aeronautical Ignition: Impact of Critical Parameters on the Mechanisms Acting Along the Different Ignition Phases,”
Ph.D. thesis
, Normandie Université.https://tel.archives-ouvertes.fr/tel-01938253
20.
Meeks
,
E.
,
Naik
,
C. V.
,
Litrico
,
G.
, and
Rida
,
S.
, “
A Computationally Efficient Method That Predicts Light-Around for Both Gas- and Liquid-Fueled Combustion
,”
ASME
Paper No. GT2021-58770.10.1115/GT2021-58770
21.
Patel
,
A.
,
Kong
,
S.
, and
Reitz
,
R.
,
2004
, “
Development and Validation of a Reduced Reaction Mechanism for HCCI Engine Simulations
,”
SAE
Paper No. 2004-01-0558.10.4271/2004-01-0558
You do not currently have access to this content.