Abstract

Electric ducted fan has newly emerged as the most compact type of propulsion fan for flying cars, because of its flexible configuration arrangement, low noise level and high safety level operation. Typically, an electric ducted fan is composed of a hub-driven fan and a hub-mounted inner rotor electrical machine. The thermal management of the hub-mounted electrical machine is essential because it determines the machine's continuous output power and reliability, as well as the fan thrust force. The heat transmitted from the stator winding to the cooling guide vane (CGV) is dissipated by introducing the air flow at hub region to the CGV. Therefore, in order to better improve the thermal performance of the CGV, an aerodynamic design of CGV is proposed in this paper for better thermal management of stator end-windings. First, for a certain desired power output of electrical machine under temperature constraints of stator winding, lumped thermal network is established to derive the requirement of heat transfer coefficients of the CGV. Then, from engineering feasibility, three different CGVs including straight type, arc-shape type and airfoil-shape type are tested by computational fluid dynamics. The evaluation of the CGV designs include the flow characteristics, power requirements, and thermal characteristics for stator winding cooling purposes. In comparison with the conventionally straight type CGV, improvements are gained from the designed arc-shape type and airfoil-shape type cooling configurations, whereas the fan thrust force remains the same simultaneously. It is verified that the arc-shape type and airfoil-shape type CGVs are promising in enhancing the thermal management performance of the electrical machine stator winding without power requirement.

References

1.
Al Haddad
,
C.
,
Chaniotakis
,
E.
,
Straubinger
,
A.
,
Plötner
,
K.
, and
Antoniou
,
C.
,
2020
, “
Factors Affecting the Adoption and Use of Urban Air Mobility
,”
Transp. Res. Part A Policy Pract.
,
132
, pp.
696
712
.10.1016/j.tra.2019.12.020
2.
Silva
,
C.
,
Johnson
,
W. R.
,
Solis
,
E.
,
Patterson
,
M. D.
, and
Antcliff
,
K. R.
,
2018
, “
VTOL Urban Air Mobility Concept Vehicles for Technology Development
,”
AIAA
Paper No. 2018-3847.10.2514/6.2018-3847
3.
Schäfer
,
A. W.
,
Barrett
,
S. R. H.
,
Doyme
,
K.
,
Dray
,
L. M.
,
Gnadt
,
A. R.
,
Self
,
R.
,
O'Sullivan
,
A.
,
Synodinos
,
A. P.
, and
Torija
,
A. J.
,
2019
, “
Technological, Economic and Environmental Prospects of All-Electric Aircraft
,”
Nat. Energy
,
4
(
2
), pp.
160
166
.10.1038/s41560-018-0294-x
4.
Nex
,
F.
, and
Remondino
,
F.
,
2014
, “
UAV for 3D Mapping Applications: A Review
,”
Appl. Geomatics
,
6
(
1
), pp.
1
15
.10.1007/s12518-013-0120-x
5.
Liu
,
P.
,
Chen
,
A. Y.
,
Huang
,
Y.-N.
,
Han
,
J.-Y.
,
Lai
,
J.-S.
,
Kang
,
S.-C.
,
Wu
,
T.-H.
,
Wen
,
M.-C.
, and
Tsai
,
M.-H.
,
2014
, “
A Review of Rotorcraft Unmanned Aerial Vehicle (UAV) Developments and Applications in Civil Engineering
,”
Smart Struct. Syst.
,
13
(
6
), pp.
1065
1094
.10.12989/sss.2014.13.6.1065
6.
Bolam
,
R. C.
,
Vagapov
,
Y.
,
Day
,
R. J.
, and
Anuchin
,
A.
,
2020
, “
Aerodynamic Analysis and Design of a Rim-Driven Fan for Fast Flight
,”
J. Propul. Power
, (
7
), pp.
1
13
.10.2514/1.B37736
7.
Bacchini
,
A.
, and
Cestino
,
E.
,
2019
, “
Electric VTOL Configurations Comparison
,”
Aerospace
,
6
(
3
), p.
26
.10.3390/aerospace6030026
8.
Chou
,
T.
,
Ying
,
Q.
,
Qian
,
Y.
,
Zhuge
,
W.
, and
Zhang
,
Y.
,
2021
, “
Study on Overall Design of a Vertical Take-Off and Landing Unmanned Aerial Vehicle Powered by Electric Ducted Fans
,”
ASME
Paper No. FEDSM2021-65556.10.1115/FEDSM2021-65556
9.
Kuhn
,
R. E.
,
1960
, “
Review of Basic Principles of V/STOL Aerodynamics
,”
Conference on V/Stol Aircraft a Compilation of the Papers Presented at Langley Research Center
,
Langley Field, VA
., Nov. 17–18.https://ntrs.nasa.gov/citations/19630004808
10.
Eker
,
U.
,
Fountas
,
G.
,
Anastasopoulos
,
P. C.
, and
Still
,
S. E.
,
2020
, “
An Exploratory Investigation of Public Perceptions Towards Key Benefits and Concerns From the Future Use of Flying Cars
,”
Travel Behav. Soc.
,
19
(
2
), pp.
54
66
.10.1016/j.tbs.2019.07.003
11.
Dong
,
C.
,
Qian
,
Y.
,
Zhang
,
Y.
, and
Zhuge
,
W.
,
2020
, “
A Review of Thermal Designs for Improving Power Density in Electrical Machines
,”
IEEE Trans. Transp. Electrif.
,
6
(
4
), pp.
1386
1400
.10.1109/TTE.2020.3003194
12.
Sayed
,
E.
,
Abdalmagid
,
M.
,
Pietrini
,
G.
,
Sa'adeh
,
N.-M.
,
Callegaro
,
A. D.
,
Goldstein
,
C.
, and
Emadi
,
A.
,
2021
, “
Review of Electric Machines in More-/Hybrid-/Turbo-Electric Aircraft
,”
IEEE Trans. Transp. Electrif.
,
7
(
4
), pp.
2976
3005
.10.1109/TTE.2021.3089605
13.
Balachandran
,
T.
,
David Reband
,
J.
,
Xiao
,
J.
,
Sirimmana
,
S.
,
Dhilon
,
R.
, and
Haran
,
K. S.
,
2020
, “
Co-Design of an Integrated Direct-Drive Electric Motor and Ducted Propeller for Aircraft Propulsion
,”
2020 International Symposium on Fundamentals of Electrical Engineering
,
IEEE
,
New Orleans, LA
, Aug. 26–28, pp.
1
11
.10.2514/6.2020-3560
14.
Balachandran
,
T.
,
Reband
,
J.
,
Lewis
,
M.
, and
Haran
,
K. S.
,
2021
, “
Co-Design of Integrated Propeller and Inner Rotor PMSM for Electric Aircraft Application
,”
2021 IEEE International Electric Machines & Drives Conference
,
IEEE
,
Hartford, CT
, pp.
1
8
.10.1109/IEMDC47953.2021.9449579
15.
McDonald
,
A. R.
,
2015
, “
Modeling of Electric Motor Driven Propellers for Conceptual Aircraft Design
,”
AIAA
Paper No. 2015-1676
.10.2514/6.2015-1676
16.
Jin
,
Y.
,
Qian
,
Y.
,
Zhang
,
Y.
, and
Zhuge
,
W.
,
2018
, “
Modeling of Ducted-Fan and Motor in an Electric Aircraft and a Preliminary Integrated Design
,”
SAE Int. J. Aerosp.
,
11
(
2
), pp.
115
126
.10.4271/01-11-02-0007
17.
Putra
,
N.
, and
Ariantara
,
B.
,
2017
, “
Electric Motor Thermal Management System Using L-Shaped Flat Heat Pipes
,”
Appl. Therm. Eng.
,
126
, pp.
1156
1163
.10.1016/j.applthermaleng.2017.01.090
18.
Sun
,
Y.
,
Zhang
,
S.
,
Chen
,
G.
,
Tang
,
Y.
, and
Liang
,
F.
,
2020
, “
Experimental and Numerical Investigation on a Novel Heat Pipe Based Cooling Strategy for Permanent Magnet Synchronous Motors
,”
Appl. Therm. Eng.
,
170
, p.
114970
.10.1016/j.applthermaleng.2020.114970
19.
Greco
,
A.
,
Cao
,
D.
,
Jiang
,
X.
, and
Yang
,
H.
,
2014
, “
A Theoretical and Computational Study of Lithium-Ion Battery Thermal Management for Electric Vehicles Using Heat Pipes
,”
J. Power Sources
,
257
, pp.
344
355
.10.1016/j.jpowsour.2014.02.004
20.
Dong
,
C.
,
Qian
,
Y.
,
Zhang
,
Y.
,
Hu
,
X.
, and
Zhuge
,
W.
,
2020
, “
Coupled Thermal-Electromagnetic Parametric Modeling of Permanent Magnet Machine Based on Flat Heat Pipe Cooling
,” 23rd International Conference on Electrical Machines and Systems (
ICEMS
),
The Institute of Electrical Engineers of Japan
,
Hamamatsu, Japan
, Nov. 24–27, pp.
1689
1694
.10.23919/ICEMS50442.2020.9291188
21.
Huang
,
J.
,
Shoai Naini
,
S.
,
Miller
,
R.
,
Rizzo
,
D.
,
Sebeck
,
K.
,
Shurin
,
S.
, and
Wagner
,
J.
,
2019
, “
A Hybrid Electric Vehicle Motor Cooling System—Design, Model, and Control
,”
IEEE Trans. Veh. Technol.
,
68
(
5
), pp.
4467
4478
.10.1109/TVT.2019.2902135
You do not currently have access to this content.