Abstract

With the significant evolution of modern gas turbine engines, selection of high-temperature resistant alloys in the hot section is known to be the fundamental solution to enhance the capabilities of these engines. In general, the high-temperature components are mainly comprised of polycrystalline, directionally solidified, and single crystal superalloys. Single crystal (SX) superalloys were developed in the 1980s to achieve high fatigue resistance and substantial creep rupture strength by eliminating grain boundaries. Directional solidification methods enabled the solidification arrangement of the materials to be comprised of columnar grains which are aligned parallel to the 〈001〉 direction. These casting types have been frequently used with nickel-based superalloys (NBSAs) to develop modern gas turbine blades. In this work, the yield behavior of generic SX and directionally solidified (DS) NBSAs is studied. By observing various SX and DS alloys, it was concluded with need for a novel criterion that can present anisotropic and tensile/compressive asymmetric yield surfaces. This novel criterion is comprised of the criterion proposed by Hill for anisotropic materials and the method developed by Drucker and Prager for alloys that have different tensile and compressive yield strengths. Additional terms to Hill's criterion are introduced to capture the coupling effect of normal stress and shear stress when the applied loads are not in the direction of principal axes of the material coordinate system for single crystal alloys. The parameters for the criterion are obtained from simple uniaxial tension and compression experiments. Results are compared with various well-established yield criterions. Additionally, the novel criterion is utilized to capture the effective stress and strain of multi-axial loading of turbine blades under nonisothermal conditions

References

1.
Heo
,
I.
,
Yoon
,
D.
, and
Kim
,
J.
,
2019
, “
Low Cycle Fatigue Life Evaluation According to Temperature and Orientation in Nickel-Base Superalloy
,”
Key Eng. Mater.
,
814
, pp.
121
126
.10.4028/www.scientific.net/KEM.814.121
2.
Wijeyeratne
,
N.
,
Irmark
,
F.
,
Gordon
,
A. P.
, and
Jeon
,
J. Y.
,
2020
, “
Crystal Visco-Plastic Model for Ni-Base Superalloys Under Thermo-Mechanical Fatigue
,”
ASME
Paper No. GT2020-14163.10.1115/GT2020-14163
3.
Leidermark
,
D.
,
2010
, “
Modelling of Constitutive and Fatigue Behaviour of a Single-Crystal Nickel-Base Superalloy
,”
Master thesis
,
Linköping Studies in Science and Technology
, Linkoping, Sweden.http://www.diva-portal.org/smash/get/diva2:318380/FULLTEXT02
4.
Mises
,
R. V.
, “
Mechanik Der Festen Körper im Plastisch- Deformablen Zustand
,”
Nachr. Ges. Wissen. Göttingen, Math. Phys. Klasse
,
1913
(
1913
), pp.
582
592
.
5.
Drucker
,
D. C.
, and
Prager
,
W.
,
1952
, “
Soil Mechanics and Plastic Analysis or Limit Design
,”
Q. Appl. Math.
,
10
(
2
), pp.
157
165
.10.1090/qam/48291
6.
Hill
,
R.
,
1948
, “
A Theory of the Yielding and Plastic Flow of Anisotropic Metals
,”
Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci.
,
193
, pp.
281
297
.10.1098/rspa.1948.0045
7.
Tsai
,
S. W.
, and
Wu
,
E. M.
,
1971
, “
A General Theory of Strength for Anisotropic Materials
,”
J. Compos. Mater.
,
5
(
1
), pp.
58
80
.10.1177/002199837100500106
8.
Niu
,
M. C.-Y.
,
2010
,
Composite Airframe Structures: Practical Design Information and Data
,
Hong Kong Conmilit Press
, Wanchai, Hong Kong.
9.
Beck
,
T.
,
Lang
,
K. H.
,
Pitz
,
G.
, and
Löhe
,
D.
,
2002
, “
The Influence of Superimposed Creep Loadings on the Thermal-Mechanical Fatigue Behaviour of the Ni-Base Superalloy IN 792 CC
,”
Mech. Time-Depend. Mater.
,
6
(
3
), pp.
271
282
.10.1023/A:1016294404179
10.
Bates
,
P.
,
1997
, “
Creep and Fatgiue of a Single Crystal Nickel Base Superalloy
,”
The University of Aston
,
Birmingham, UK
.
11.
Dalal
,
R. P.
, Thomas, C. R., and Dardi, L. E.,
1984
, “
The Effect of Crystallographic Orientation on the Physical and Mechanical Properties of an Investment Cast Single Crystal Nickel-Base Superalloy
,”
Superalloys
, pp.
185
197
.10.7449/1984/SUPERALLOYS_1984_185_197
12.
Gabb
,
T. P.
,
Gayda
,
J.
, and
and Miner
,
R. V.
,
1986
, “
Orientation and Temperature Dependence of Some Mechanical Properties of the Single-Crystal Nickel-Base Superalloy Rene N4: Part II. Low Cycle Fatigue Behavior
,”
Metall. Trans. A
, 17, pp.
497
505
.10.1007/BF02643956
13.
Li
,
S. X.
, and
Smith
,
D. J.
,
1995
, “
Modeling of Anisotropic Creep Deformation and Damage in Single Crystal Superalloys
,”
Scr. Metall. Mater.
, 33, pp.
711
718
.10.1016/0956-716X(95)00232-K
14.
Nathal
,
M. V.
, and
Ebert
,
L. J.
,
1985
, “
Elevated Temperature Creep-Rupture Behavior of the Single Crystal Nickel-Base Superalloy NASAIR 100
,”
Metall. Trans. A
, 16, pp.
427
439
.10.1007/BF02814341
15.
Rodas
,
E. A.
, and
Neu
,
R. W.
,
2017
, “
Crystal Viscoplasticity Model for the Creep-Fatigue Interactions in Single-Crystal Ni-Base Superalloy CMSX-8
,”
Int. J. Plast.
, 100, pp.
14
33
.10.1016/j.ijplas.2017.08.008
16.
Sato
,
A.
,
2011
,
Nickel-Base Single Crystal Supperalloys for Industrual Gas Turbines
,
The University of Birmingham
, Birmingham, UK.
17.
Sengupta
,
A.
, and
Putatunda
,
S. K.
,
1995
, “
Dynamic Strain Aging in a New Single Crystal Nickel-Base Supperalloy
,”
J. Test. Eval.
, 23, pp.
87
94
.10.1520/JTE10899J
18.
Shah
,
D. M.
, and
Duhl
,
D. N.
,
1984
, “
The Effect of Orientation, Temperature and Gamma Prime Size on the Yield Strength of a Single Crystal Nickel Base Superalloy
,”
Superalloys
.10.7449/1984/SUPERALLOYS_1984_105_114
19.
Svetlov
,
I. L.
,
Petrushin
,
N. V.
,
Shchegolev
,
D. V.
, and
Khvatskiy
,
K. K.
,
2010
, “
Anisotropy of Mechanical Properties of Single Crystals in Fourth Generation Ni-Base Superalloy
,”
Ninth Liege Conference
, Liège, Belgium, Aug.
3
8
.https://www.osti.gov/etdeweb/servlets/purl/21588215
20.
Swanson
,
G. A.
,
1986
, “
Life Prediction and Constitutive Models for Enginer Hot Section Anisotropic Materials Program
,” United Technologies Corporation, East Hartford, CT. 06108, Report No. t 174952.
21.
Wang
,
B. Z.
,
2014
, “
Tension/Compression Asymmetry of [001] Single-Crystal Nickel-Base Superalloy DD6 During Low Cycle Fatigue
,”
Mater. Sci. Eng. A
, 593, pp. 31–37.10.1016/j.msea.2013.09.096
22.
Wang, X.
,
Li, J., Yu, J., Liu, S., Shi, Z., and Yue, X.
,
2015
, “
Tensile Anisotropy of Single Crystal Superalloy DD9
,”
Acta Metall. Sin.
, 51, pp.
1253
1260
.10.11900/0412.1961.2015.00369
23.
Zhang
,
L.
,
Yan
,
P.
,
Zhao
,
M.
,
Li
,
J.
,
Zhao
,
J.
,
Zeng
,
Q.
, and
Han
,
F.
,
2013
, “
Tensile Anisotropy of a Single Crystal Superalloy
,”
The Eighth Pacific Rim International Congress on Advanced Materials and Processing
, Waikoloa, HI, Aug.
4
9
.10.1007/978-3-319-48764-9_58
24.
Zhongling
,
L.
,
Jichun
,
X.
,
Qingyan
,
X.
,
Jiarong
,
L.
, and
Baicheng
,
L.
,
2015
, “
Deformation and Recrystallization of Single Crystal Nickel-Basesuperalloys During Investment Casting
,”
J. Mater. Process. Technol.
, 217, pp.
1
12
.10.1016/j.jmatprotec.2014.10.019
25.
Antolovich
,
E. H.
, and
Stephen
,
1986
, “
Oberservations of High Temperature Tensile and Cyclic Deformation in a Directionally Soliidified Nickel-Base Superalloy
,”
Structure and Deformation of Boundaries
, The Georgia Institute of Technology, Atlanta, GA.
26.
Ashbrook
,
R.
,
1974
, “
Directionally Solidified Composite Systems Under Evaluation
,” Lewis Research Center, Cleveland, OH, No. 19740047352.
27.
Stewart
,
C. M.
,
Gordon
,
A. P.
,
Ma
,
Y. W.
, and
Neu
,
R. W.
,
2011
, “
An Anisotropic Tertiary Creep Damage Constitutive Model for Anisotropic Materials
,”
Int. J. Pressure Vessels Piping
,
88
(
8–9
), pp.
356
364
.10.1016/j.ijpvp.2011.06.010
28.
C.
,
Zhaokuang
,
Y.
,
Jinjiang
,
S.
,
Xiaofeng
,
A.
,
G.
,
Hengrong
., and
H.
,
Zhuangqi
,
2008
, “
High Temperature Low Cycle Fatigue Behavior of a Directionally Solidified Ni-Base Superalloy DZ951
,”
Mater. Sci. Eng. A
, 488, pp.
389
397
.10.1016/j.msea.2007.11.045
29.
Shi
,
D.
,
Dong
,
C.
, and
Yang
,
X.
,
2013
, “
Constitutive Modeling and Failure Mechanisms of Anisotropic Tensile and Creep
,”
Mater. Des.
, 45, pp.
663
673
.10.1016/j.matdes.2012.09.031
30.
Ebert
,
M. V.
, and
Nathal
,
L. J.
,
1985
, “
Elevated Temperature Creep-Rupture Behavior of the Single Crystal Nickel-Base Superalloy Nasair 100
,”
Metall. Trans. A
.
31.
Gordon
,
A. P.
,
2006
,
Crack Initiation Modeling of a Directionally-Solidified Nickel-Base Superalloy
,
Georgia Institute of Technology, Atlanta, GA
.
32.
Huron
,
E.
,
1986
,
High Temperature Monotonic and Cyclic Deformation in a Directionally Solidified Nickel-Base Superalloy
,
Lewis Research Center, Cleveland, OH
.
33.
Freche
,
J.
,
Waters
,
W.
, and
Ashbrook
,
R.
,
1968
,
Application of Directional Solidification to a NASA Nickel-Base Alloy (Taz-8b)
,
Lewis Research Center, Cleveland, OH
.
34.
Harris
,
K.
,
Erickson
,
G. L.
, and
Schwer
,
R. E.
,
1980
,
Mar M 247 Derivations - Cm 247 Lc Ds Alloy CMSX Single Crystal Alloys Properties & Performance
,
Cannon-Muskegon Corporation
, Norton Shores, MI.
35.
Heck
,
K.
,
Blackford
,
R.
, and
Singer
,
R. F.
,
1999
, “
Castability of Directionally Solidified Nickel Base Superalloys
,”
Mater. Sci. Technol.
,
15
(
2
), pp.
213
220
.10.1179/026708399101505617
36.
Kalluri
,
A. A.-A.
, and
Sreeramesh
,
K.
,
1991
, “
Estimation of the Engineering Elastic Constants of A Directionally Solidified Superalloy for Finite Element Structural Analysis
,”
Lewis Research Center Group
, Cleveland, OH.
37.
Kuo
,
C.-M.
,
2012
, “
Temperature Dependent Elastic Constants of Directionally Solidified Superalloys
,”
ASME J. Eng. Mater. Technol.
,
134
(
2
), p.
024501
.10.1115/1.4006228
38.
Maldini
,
M.
,
Marchionni
,
M.
,
Nazmy
,
M.
,
Staubli
,
M.
, and
Osinkolu
,
G.
,
1996
, “
Creep and Fatigue Properties of a Directionally Solidified Nickel Base Superalloy At Elevated Temperature
,”
The Minerals, Metals & Materials Society
, Warrendale, PA.https://www.tms.org/superalloys/10.7449/1996/Superalloys_1996_327_334.pdf
39.
Shenoym
,
M. M.
,
Mcdowell
,
D. L.
, and
Neu
,
R. W.
,
2006
, “
Transversely Isotropic Viscoplasticity Model For a Directionally Solidified Ni-Base Superalloy
,”
Int. J. Plast.
, 22, pp.
2301
2326
.
40.
Arakere
,
N. K.
, and
Swanson
,
G. R.
,
2000
, “
Effect of Crystal Orientation on Fatigue Failure of Single Crystal Nickel Base Turbine Blade Superalloys
,”
ASME J. Gas Turbines Power
, 124(1), pp.
161
176
.10.1115/1.1413767
41.
Prakash
,
A.
,
1981
, “
Low Cycle Fatigue Behavior of the Directionally Solidified Nickel Base Superalloy Rene' 80
,”
Universit of Cincinnati
, Cincinnati, OH.
42.
Kumar Rai
,
R.
,
Paulose
,
N.
, and
Sahu
,
J.
,
2020
, “
Low Cycle Fatigue Behavior of a Directionally Solidified Nickel-Based Superalloy: Mechanistic and Microstructural Aspect
,”
Metall. Mater. Trans. A
, 51, pp.
2752
2765
.10.1007/s11661-020-05720-5
43.
Neal
,
S. D.
, and
Neu
,
R. W.
,
2014
, “
Reduced-Order Constitutive Modeling of Directionally Solidified Ni-Base Superalloys
,”
ASME J. Eng. Mater. Technol.
,
136
(
2
), p.
021003
.10.1115/1.4026271
44.
Sockel
,
H.-G.
, and
Kuhn
,
H.-A
,
1989
, “
Elastic Propeties of Textured and Directionally Solidified Nickel-Based Superalloys Between 25 and 1200 °C
,”
Mater. Sci. Eng.
, 112, pp.
117
126
.10.1016/0921-5093(89)90350-X
45.
Wee
,
S.
,
Do
,
J.
,
Kim
,
K.
,
Lee
,
C.
,
Seok
,
C.
,
Choi
,
B.-G.
,
Choi
,
Y.
, and
Kim
,
W.
,
2020
, “
Review On Mechanical Thermal Properties of Superalloys and Thermal Barrier Coating Used In Gas Turbines
,”
Appl. Sci.
, 10.10.3390/app10165476
46.
Nakagawa
,
Y. G.
,
Ohtomo
,
A.
, and
Saiga
,
Y.
,
1973
, “
Directional Solidification of Rene 80
,”
Metallurgy Department
,
Ishikawajima-Harima Heavy Industries, Tokyo, Japan
.
47.
Zhang
,
Y.
,
Shi
,
H.
,
Gu
,
J.
,
Li
,
C.
,
Kadau
,
K.
, and
Luesebrink
,
O.
,
2013
, “
Orientation And Temperature Dependences On Fatigue Crack Growth (Fcg) Behavior Of A Ni-Base Directionally Solidified Superalloy
,”
Siemens Energy
, Beijing, China.
48.
Chu
,
Z.
,
Yu
,
J.
,
Sun
,
X.
,
Guan
,
H.
, and
Hu
,
Z.
,
2010
, “
Tensile Property and Deformation Behavior of a Directionally Solidified Ni-Base Superalloy
,”
Mater. Sci. Eng. A
, 527, pp.
3010
3014
.10.1016/j.msea.2010.01.051
49.
Zhang
,
Z.
,
Zhang
,
K.
, and
Yang
,
N.
,
1993
,
Mechanics of Structure for Composite Materials
, Vol.
9
,
Publishing Company of Beijing, University of Aeronautics and Astronautics
(in Chinese),
Beijing
.
50.
Ding
,
Z.-p.
,
Liu
,
Y.-l.
,
Yin
,
Z.-y.
,
Yang
,
Z.-G.
, and
Cheng
,
X.-m.
,
2006
, “
Constitutive Model for an FCC Single-Crystal Material
,”
Front. Mech. Eng. China
,
1
(
1
), pp.
40
47
.10.1007/s11465-005-0012-9
51.
Liu
,
C.
,
Huang
,
Y.
, and
Stout
,
M. G.
,
1997
, “
On the Asymmetric Yield Surface of Plastically Orthotropic Materials: A Phenomenological Study
,”
Acta Mater.
,
45
(
6
), pp.
2397
2406
.10.1016/S1359-6454(96)00349-7
52.
Yue
,
Z.
, and
Zheng
,
C.
,
1993
, “
The Mechanical Study of the Tension/Compression Flow Asymmetry of Nickel Base Turbine Blade Alloys
,”
J. Mech. Strength
,
15
(
4
), pp.
53
58
.
53.
Tsuno
,
N.
,
Shimabayashi
,
S.
,
Kakehi
,
K.
,
Rae
,
C.
, and
Reed
,
R. C.
,
2008
, “
Tension/Compression Asymmetry in Yield and Creep Strengths of Ni-Based Superalloys
,”
Proceedings of the International Symposium on Superalloys
, Champion, PA, Sept. 14–18, pp.
433
442
.10.7449/2008/Superalloys_2008_433_442
54.
Phillips
,
A.
, and
Sierakowski
,
R. L.
,
1965
, “
On the Concept of the Yield Surface
,”
Acta Mech.
,
1
(
1
), pp.
29
35
.10.1007/BF01270502
55.
Ramaglia
,
A. D.
, and
Villari
,
P.
,
2013
, “
Creep and Fatigue of Single Crystal and Directionally Solidified Nickel-Base Blades Via a Unified Approach Based on Hill48 Potential Function: Part 1—Plasticity and Creep
,”
ASME
Paper No. GT2013-94675.10.1115/GT2013-94675
You do not currently have access to this content.