Abstract

Partial fuel stratification (PFS) is a promising fuel injection strategy to stabilize lean premixed combustion in spark-ignition (SI) engines. PFS creates a locally stratified mixture by injecting a fraction of the fuel, just before spark timing, into the engine cylinder containing homogeneous lean fuel/air mixture. This locally stratified mixture, when ignited, results in complex flame structure and propagation modes similar to partially premixed flames and allows for faster and more stable flame propagation than a homogeneous lean mixture. This study focuses on understanding the detailed flame structures associated with PFS-assisted lean premixed combustion. First, a two-dimensional direct numerical simulation (DNS) is performed using detailed fuel chemistry, experimental pressure trace, and realistic initial conditions mapped from a prior engine large-eddy simulation (LES), replicating practical lean SI operating conditions. DNS results suggest that the conventional triple flame structure is prevalent during the initial stage of flame kernel growth. Both premixed and nonpremixed combustion modes are present with the premixed mode contributing dominantly to the total heat release. Detailed analysis further reveals the effects of flame stretch and fuel pyrolysis on flame displacement speed. Based on the DNS findings, the accuracy of a hybrid G-equation/well-stirred reactor (WSR) combustion model is assessed for the PFS-assisted lean operation in the LES context. It is found that the G-equation model qualitatively captures the premixed branches of the triple flame, while the WSR model predicts the nonpremixed branch of the triple flame. Finally, potential needs for improvements to the hybrid G-equation/WSR modeling approach are discussed.

References

1.
Hu
,
Z.
,
Zhang
,
J.
,
Sjöberg
,
M.
, and
Zeng
,
W.
,
2020
, “
The Use of Partial Fuel Stratification to Enable Stable Ultra-Lean Deflagration-Based Spark-Ignition Engine Operation With Controlled End-Gas Autoignition of Gasoline and E85
,”
Int. J. Engine Res.
,
21
(
9
), pp.
1678
1695
.10.1177/1468087419889702
2.
Tornatore
,
C.
, and
Sjöberg
,
M.
,
2021
, “
Optical Investigation of a Partial Fuel Stratification Strategy to Stabilize Overall Lean Operation of a DISI Engine Fueled With Gasoline and E30
,”
Energies
,
14
(
2
), p.
396
.10.3390/en14020396
3.
Xu
,
C.
,
Som
,
S.
, and
Sjoberg
,
M.
,
2021
, “
Large Eddy Simulation of Lean Mixed-Mode Combustion Assisted by Partial Fuel Stratification in a Spark-Ignition Engine
,”
J. Energy Resour. Technol.
,
143
(
7
), p.
072304
.10.1115/1.4050588
4.
Peters
,
N.
,
2000
,
Turbulent Combustion
,
Cambridge University Press, Cambridge, UK
.
5.
Pitsch
,
H.
,
2005
, “
A Consistent Level Set Formulation for Large-Eddy Simulation of Premixed Turbulent Combustion
,”
Combust. Flame
,
143
(
4
), pp.
587
598
.10.1016/j.combustflame.2005.08.031
6.
Deng
,
S.
,
Zhao
,
P.
,
Mueller
,
M. E.
, and
Law
,
C. K.
,
2015
, “
Autoignition-Affected Stabilization of Laminar Nonpremixed DME/Air Coflow Flames
,”
Combust. Flame
,
162
(
9
), pp.
3437
3445
.10.1016/j.combustflame.2015.06.007
7.
Chen
,
J. H.
, and
Im
,
H. G.
,
2000
, “
Stretch Effects on the Burning Velocity of Turbulent Premixed Hydrogen/Air Flames
,”
Proc. Combust. Inst.
,
28
(
1
), pp.
211
218
.10.1016/S0082-0784(00)80213-1
8.
Chen
,
J. H.
, and
Im
,
H. G.
,
1998
, “
Correlation of Flame Speed With Stretch in Turbulent Premixed Methane/Air Flames
,”
Symp. (Int.) Combust.
,
27
(
1
), pp.
819
826
.10.1016/S0082-0784(98)80477-3
9.
Im
,
H. G.
, and
Chen
,
J. H.
,
1999
, “
Structure and Propagation of Triple Flames in Partially Premixed Hydrogen-Air Mixtures
,”
Combust. Flame
,
119
(
4
), pp.
436
454
.10.1016/S0010-2180(99)00073-5
10.
Chung
,
S. H. H.
,
2007
, “
Stabilization, Propagation and Instability of Tribrachial Triple Flames
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
877
892
.10.1016/j.proci.2006.08.117
11.
Tomboulides
,
A. G.
,
Lee
,
J. C. Y.
, and
Orszag
,
S. A.
,
1997
, “
Numerical Simulation of Low Mach Number Reactive Flows
,”
J. Sci. Comput.
,
12
(
2
), pp.
139
167
.10.1023/A:1025669715376
12.
Fischer
,
P. F.
,
Lottes
,
J. W.
, and
Kerkemeier
,
S. G.
,
2019
, NEK5000 Version 19.0,
Argonne National Laboratory
, Lemont,
IL
, accessed Apr. 15, 2021, https://nek5000.mcs.anl.gov
13.
Deville
,
M. O.
,
Fischer
,
P. F.
, and
Mund
,
E. H.
,
2002
,
High-Order Methods for Incompressible Fluid Flow
,
Cambridge University Press
, Cambridge, UK.
14.
Giannakopoulos
,
G. K.
,
Frouzakis
,
C. E.
,
Boulouchos
,
K.
,
Fischer
,
P. F.
, and
Tomboulides
,
A. G.
,
2017
, “
Direct Numerical Simulation of the Flow in the Intake Pipe of an Internal Combustion Engine
,”
Int. J. Heat Fluid Flow
,
68
, pp.
257
268
.10.1016/j.ijheatfluidflow.2017.09.007
15.
Schmitt
,
M.
,
Frouzakis
,
C. E.
,
Wright
,
Y. M.
,
Tomboulides
,
A. G.
, and
Boulouchos
,
K.
,
2016
, “
Investigation of Wall Heat Transfer and Thermal Stratification Under Engine-Relevant Conditions Using DNS
,”
Int. J Engine Res.
,
17
(
1
), pp.
63
75
.10.1177/1468087415588710
16.
Ameen
,
M. M.
,
Patel
,
S. S.
, and
Chatterjee
,
T.
,
2019
, “
Developing a Framework for Performing High-Fidelity Engine Simulations Using Nek5000 Code for Exascale Computing
,”
DOE Vehicle Technologies Office Annual Merit Review
, ACE126, June 11.https://www.energy.gov/eere/vehicles/downloads/developing-framework-performing-highfidelity-engine-simulations-using
17.
Ameen
,
M. M.
,
Patel
,
S. S.
, and
Chatterjee
,
T.
,
2020
, “
Direct Numerical Simulation (DNS) and High-Fidelity Large-Eddy Simulation (LES) for Improved Prediction of in-Cylinder Flow and Combustion Processes
,”
DOE Vehicle Technologies Office Annual Merit Review
, ACE146, June 1–4.https://www.energy.gov/eere/vehicles/downloads/directnumerical-simulation-dns-and-high-fidelity-large-eddy-simulation-les
18.
Xu
,
C.
,
Pal
,
P.
,
Ren
,
X.
,
Sjöberg
,
M.
,
Van Dam
,
N.
,
Wu
,
Y.
,
Lu
,
T.
,
McNenly
,
M.
, and
Som
,
S.
,
2021
, “
Numerical Investigation of Fuel Property Effects on Mixed-Mode Combustion in a Spark-Ignition Engine
,”
J. Energy Resour. Technol.
,
143
(
4
), p.
042306
.10.1115/1.4048242
19.
Bhagatwala
,
A.
,
Sankaran
,
R.
,
Kokjohn
,
S.
, and
Chen
,
J. H.
,
2015
, “
Numerical Investigation of Spontaneous Flame Propagation Under RCCI Conditions
,”
Combust. Flame
,
162
(
9
), pp.
3412
3426
.10.1016/j.combustflame.2015.06.005
20.
Krisman
,
A.
,
Hawkes
,
E. R.
, and
Chen
,
J. H.
,
2019
, “
A Parametric Study of Ignition Dynamics at ECN Spray a Thermochemical Conditions Using 2D DNS
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
4787
4795
.10.1016/j.proci.2018.08.026
21.
Luong
,
M. B.
,
Hernández Pérez
,
F. E.
, and
Im
,
H. G.
,
2020
, “
Prediction of Ignition Modes of NTC-Fuel/Air Mixtures With Temperature and Concentration Fluctuations
,”
Combust. Flame
,
213
, pp.
382
393
.10.1016/j.combustflame.2019.12.002
22.
Wang
,
H.
,
Hawkes
,
E. R.
,
Ren
,
J.
,
Chen
,
G.
,
Luo
,
K.
,
Fan
,
J.
, and
Wang
,
H.
,
2021
, “
2-D and 3-D Measurements of Flame Stretch and Turbulence-Flame Interactions in Turbulent Premixed Flames Using DNS
,”
J. Fluid Mech.
,
913
, p.
11
.10.1017/jfm.2020.1171
23.
Lu
,
T. F.
,
Yoo
,
C. S.
,
Chen
,
J. H.
, and
Law
,
C. K.
,
2010
, “
Three-Dimensional Direct Numerical Simulation of a Turbulent Lifted Hydrogen Jet Flame in Heated Coflow: A Chemical Explosive Mode Analysis
,”
J. Fluid Mech.
,
652
, pp.
45
64
.10.1017/S002211201000039X
24.
Luo
,
Z.
,
Yoo
,
C. S.
,
Richardson
,
E. S.
,
Chen
,
J. H.
,
Law
,
C. K.
, and
Lu
,
T.
,
2012
, “
Chemical Explosive Mode Analysis for a Turbulent Lifted Ethylene Jet Flame in Highly-Heated Coflow
,”
Combust. Flame
,
159
(
1
), pp.
265
274
.10.1016/j.combustflame.2011.05.023
25.
Shan
,
R.
,
Yoo
,
C. S.
,
Chen
,
J. H.
, and
Lu
,
T.
,
2012
, “
Computational Diagnostics for N-Heptane Flames With Chemical Explosive Mode Analysis
,”
Combust. Flame
,
159
(
10
), pp.
3119
3127
.10.1016/j.combustflame.2012.05.012
26.
Xu
,
C.
,
Poludnenko
,
A. Y.
,
Zhao
,
X.
,
Wang
,
H.
, and
Lu
,
T.
,
2019
, “
Structure of Strongly Turbulent Premixed N-Dodecane–Air Flames: Direct Numerical Simulations and Chemical Explosive Mode Analysis
,”
Combust. Flame
,
209
, pp.
27
40
.10.1016/j.combustflame.2019.07.027
27.
Yamashita
,
H.
,
Shimada
,
M.
, and
Takeno
,
T.
,
1996
, “
A Numerical Study on Flame Stability at the Transition Point of Jet Diffusion Flames
,”
Symp. (Int.) Combust.
,
26
(
1
), pp.
27
34
.10.1016/S0082-0784(96)80196-2
28.
Libby
,
P. A.
,
Liñán
,
A.
, and
Williams
,
F. A.
,
1983
, “
Strained Premixed Laminar Flames With Nonunity Lewis Numbers
,”
Combust. Sci. Technol.
,
34
(
1–6
), pp.
257
293
.10.1080/00102208308923695
29.
Clavin
,
P.
, and
Williams
,
F. A.
,
1982
, “
Effects of Molecular Diffusion and of Thermal Expansion on the Structure and Dynamics of Premixed Flames in Turbulent Flows of Large Scale and Low Intensity
,”
J. Fluid Mech.
,
116
, pp.
251
282
.10.1017/S0022112082000457
30.
Smolke
,
J.
,
Carbone
,
F.
,
Egolfopoulos
,
F. N.
, and
Wang
,
H.
,
2018
, “
Effect of N-Dodecane Decomposition on Its Fundamental Flame Properties
,”
Combust. Flame
,
190
, pp.
65
73
.10.1016/j.combustflame.2017.11.009
You do not currently have access to this content.