Abstract

Particulate deposition effects on flow and heat transfer in an internal swirl tube subjected to fly ash ingestion were investigated by constructing an unsteady simulation framework, in which a particle–wall interaction model and a mesh morphing technique were implemented. Swirling flows in the swirl tube were induced by two tangential jet nozzles. Particles having a mean diameter of 6.5 μm were released from the nozzle inlets to model an exposure duration of 4500 h for engine operation in real fly ash environment using scale factors in the unsteady simulations. Particle deposition and its dynamic process were examined, and the effects of deposition on the swirling flow were quantified by comparing time-averaged velocity profiles, vorticity, pressure loss, and heat transfer with those from a clean tube without deposition. Results reveal that the most upstream section of the swirl tube captures the majority of the particles and the deposition distributions show a spiral pattern over the tube wall. The total mass of the deposits within the tube linearly increases, while local deposition thickness has a nonlinear relationship with the exposure time due to the interaction of the particles with the swirling flow. The deposition can generate a maximum of 15% reduction in cross-sectional area of the tube within the exposure duration, resulting in a reduced swirl number, because of the accelerated axial velocity and the decreased circumferential velocity, and further lower heat transfer in the downstream section of the tube relative to the clean tube case. However, as the heat transfer in the upstream deposition section is enhanced by the roughness due to the deposition, area-averaged heat transfer throughout the entire swirl tube is slightly improved by 4.0% but simultaneously a 179% higher pressure loss is observed, leading to an overall thermal performance value of 0.79 (relative to 1.0 for a clean tube), indicating substantial degradation of cooling performance in the fouled swirl tube.

References

1.
Hay
,
N.
, and
West
,
P. D.
,
1975
, “
Heat Transfer in Free Swirling Flow in a Pipe
,”
ASME J. Heat Transf
er,
97
(
3
), pp.
411
416
.10.1115/1.3450390
2.
Chang
,
F.
, and
Dhir
,
V. K.
,
1995
, “
Mechanisms of Heat Transfer Enhancement and Slow Decay of Swirl in Tubes Using Tangential Injection
,”
Int. J. Heat Fluid Flow
,
16
(
2
), pp.
78
87
.10.1016/0142-727X(94)00016-6
3.
Glezer
,
B.
,
Moon
,
H. K.
, and
O'Connell
,
T.
,
1996
, “
A Novel Technique for the Internal Blade Cooling
,”
ASME
Paper No. 96-GT-18.10.1115/96-GT-18
4.
Ligrani
,
P. M.
,
Oliveira
,
M. M.
, and
Blaskovich
,
T.
,
2003
, “
Comparison of Heat Transfer Augmentation Techniques
,”
AIAA J.
,
41
(
3
), pp.
337
362
.10.2514/2.1964
5.
Ligrani
,
P. M.
,
Hedlund
,
C. R.
,
Babinchak
,
B. T.
,
Thambu
,
R.
,
Moon
,
H.-K.
, and
Glezer
,
B.
,
1998
, “
Flow Phenomena in Swirl Chambers
,”
Exp. Fluids
,
24
(
3
), pp.
254
264
.10.1007/s003480050172
6.
Hedlund
,
C. R.
, and
Ligrani
,
P. M.
,
2000
, “
Local Swirl Chamber Heat Transfer and Flow Structure at Different Reynolds Numbers
,”
ASME J. Turbomach.
,
122
(
2
), pp.
375
385
.10.1115/1.555458
7.
Seibold
,
F.
,
Ligrani
,
P.
, and
Weigand
,
B.
,
2022
, “
Flow and Heat Transfer in Swirl Tubes − a Review
,”
Int. J. Heat Mass Transfer
,
187
, p.
122455
.10.1016/j.ijheatmasstransfer.2021.122455
8.
Liu
,
Z.
,
Li
,
J.
,
Feng
,
Z. P.
, and
Simon
,
T. W.
,
2015
, “
Numerical Study on the Effect of Jet Nozzle Aspect Ratio and Jet Angle on Swirl Cooling in a Model of a Turbine Blade Leading Edge Cooling Passage
,”
Int. J. Heat Mass Transfer
,
90
, pp.
986
1000
.10.1016/j.ijheatmasstransfer.2015.07.050
9.
Hedlund
,
C. R.
,
Ligrani
,
P. M.
,
Glezer
,
B.
, and
Moon
,
H. K.
,
1999
, “
Heat Transfer in a Swirl Chamber at Different Temperature Ratios and Reynolds Numbers
,”
Int. J. Heat Mass Transf
er,
42
(
22
), pp.
4081
4091
.10.1016/S0017-9310(99)00086-1
10.
Biegger
,
C.
, and
Weigand
,
B.
,
2015
, “
Flow and Heat Transfer Measurements in a Swirl Chamber With Different Outlet Geometries
,”
Exp. Fluids
,
56
(
4
), p.
78
.10.1007/s00348-015-1937-3
11.
Bruschewski
,
M.
,
Scherhag
,
C.
,
Schiffer
,
H. P.
, and
Grundmann
,
S.
,
2016
, “
Influence of Channel Geometry and Flow Variables on Cyclone Cooling of Turbine Blades
,”
ASME J. Turbomach.
,
138
(
6
), p.
061005
.10.1115/1.4032363
12.
Glezer
,
B.
,
Moon
,
H. K.
,
Kerrebrock
,
J.
,
Bons
,
J.
, and
Guenette
,
G.
,
1998
, “
Heat Transfer in a Rotating Radial Channel With Swirling Internal Flow
,”
ASME
Paper No. 98-GT-214.10.1115/98-GT-214
13.
Winter
,
N.
, and
Schiffer
,
H.-P.
,
2009
, “
Effect of Rotation to the Cyclone Cooling Method: Mass Transfer Measurements
,”
International Symposium on Heat Transfer in Gas Turbine Systems
,
Antalya, Turkey
, Aug. 9–14.10.1615/ICHMT.2009.HeatTransfGasTurbSyst.440
14.
Yang
,
X.
,
Seibold
,
F.
,
Feng
,
Z.
, and
Weigand
,
B.
,
2022
, “
Effects of Blade Lean on Internal Swirl Cooling at Turbine Blade Leading Edges
,”
Int. J. Heat Mass Transfer
,
194
, p.
123111
.10.1016/j.ijheatmasstransfer.2022.123111
15.
Biegger
,
C.
,
Rao
,
Y.
, and
Weigand
,
B.
,
2018
, “
Flow and Heat Transfer Measurements in Swirl Tubes With One and Multiple Tangential Inlet Jets for Internal Gas Turbine Blade Cooling
,”
Int. J. Heat Fluid Flow
,
73
, pp.
174
187
.10.1016/j.ijheatfluidflow.2018.07.011
16.
Galeana
,
D.
, and
Beyene
,
A.
,
2021
, “
Gas Turbine Blade Heat Transfer and Internal Swirl Cooling Flow Experimental Study Using Liquid Crystals and Three-Dimensional Stereo-Particle Imaging Velocimetry
,”
ASME J. Energy Resour. Technol.
,
143
(
10
), p.
102106
.10.1115/1.4050352
17.
Lin
,
G.
,
Kusterer
,
K.
,
Bohn
,
D.
,
Sugimoto
,
T.
,
Tanaka
,
R.
, and
Kazari
,
M.
,
2013
, “
Investigation on Heat Transfer Enhancement and Pressure Loss of Double Swirl Chambers Cooling
,”
Propul. Power Res.
,
2
(
3
), pp.
177
187
.10.1016/j.jppr.2013.07.003
18.
Seibold
,
F.
, and
Weigand
,
B.
,
2021
, “
Numerical Analysis of the Flow Pattern in Convergent Vortex Tubes for Cyclone Cooling Applications
,”
Int. J. Heat Fluid Flow
,
90
, p.
108806
.10.1016/j.ijheatfluidflow.2021.108806
19.
Luan
,
Y.
,
Rao
,
Y.
, and
Weigand
,
B.
,
2022
, “
Experimental and Numerical Study of Heat Transfer and Pressure Loss in a Multi-Convergent Swirl Tube With Tangential Jets
,”
Int. J. Heat Mass Transfer
,
190
, p.
122797
.10.1016/j.ijheatmasstransfer.2022.122797
20.
Khalatov
,
A.
,
Syred
,
N.
,
Bowen
,
P.
,
Al-Ajmi
,
R.
,
Kozlov
,
A.
, and
Schukin
,
A.
,
2000
, “
Innovative Cyclone Cooling Scheme for Gas Turbine Blade: Thermal-Hydraulic Performance Evaluation
,”
ASME
Paper No. 2000-GT-237.10.1115/2000-GT-237
21.
Luan
,
Y.
,
Rao
,
Y.
,
Wang
,
K.
, and
Wu
,
W.
,
2022
, “
Experimental and Numerical Study of Heat Transfer and Pressure Loss in a Swirl Multi-Pass Channel With Convergent Jet Slots
,”
ASME J. Turbomach.
,
144
(
7
), p.
071006
.10.1115/1.4053487
22.
Yao
,
R.
,
Su
,
H.
,
Cheng
,
Y.
,
Wang
,
J.
, and
Pu
,
J.
,
2022
, “
Numerical Investigation of a Novel Multistage Swirl Cooling Conception in Blade Leading Edge of Gas Turbine
,”
Int. J. Therm. Sci.
,
172
, p.
107269
.10.1016/j.ijthermalsci.2021.107269
23.
Dunn
,
M. G.
,
2012
, “
Operation of Gas Turbine Engines in an Environment Contaminated With Volcanic Ash
,”
ASME J. Turbomach.
,
134
(
5
), p.
051001
.10.1115/1.4006236
24.
Schneider
,
O.
,
Dohmen
,
H. J.
,
Benra
,
F.-K.
, and
Brillert
,
D.
,
2003
, “
Investigations of Dust Separation in the Internal Cooling Air System of Gas Turbines
,”
ASME
Paper No. GT2003-38293.10.1115/GT2003-38293
25.
Dunn
,
M. G.
,
Baran
,
A. J.
, and
Miatech
,
J.
,
1996
, “
Operation of Gas Turbine Engines in Volcanic Ash Clouds
,”
ASME J. Eng. Gas Turbines Power
,
118
(
4
), pp.
724
731
.10.1115/1.2816987
26.
Ai
,
W. G.
,
Murray
,
N.
,
Fletcher
,
T. H.
,
Harding
,
S.
, and
Bons
,
J. P.
,
2012
, “
Effect of Hole Spacing on Deposition of Fine Coal Flyash Near Film Cooling Holes
,”
ASME J. Turbomach.
,
134
(
4
), p.
041021
.10.1115/1.4003717
27.
Albert
,
J. E.
, and
Bogard
,
D. G.
,
2012
, “
Experimental Simulation of Contaminant Deposition on a Film Cooled Turbine Airfoil Leading Edge
,”
ASME J. Turbomach.
,
134
(
5
), p.
051014
.10.1115/1.4003964
28.
Lawson
,
S. A.
,
Thole
,
K. A.
,
Okita
,
Y.
, and
Nakamata
,
C.
,
2012
, “
Simulations of Multiphase Particle Deposition on a Showerhead With Staggered Film-Cooling Holes
,”
ASME J. Turbomach.
,
134
(
5
), p.
051041
.10.1115/1.4004757
29.
Yang
,
X.
,
Hao
,
Z.
, and
Feng
,
Z.
,
2021
, “
An Experimental Study on Turbine Vane Leading-Edge Film Cooling With Deposition
,”
Appl. Therm. Eng.
,
198
, p.
117447
.10.1016/j.applthermaleng.2021.117447
30.
Yang
,
X.
,
Hao
,
Z. H.
, and
Feng
,
Z. P.
,
2022
, “
Particle Deposition Patterns on High-Pressure Turbine Vanes With Aggressive Inlet Swirl
,”
Chin. J. Aeronaut.
,
35
(
3
), pp.
75
89
.10.1016/j.cja.2021.06.005
31.
Hao
,
Z.
,
Yang
,
X.
, and
Feng
,
Z.
,
2021
, “
Unsteady Simulations of Migration and Deposition of Fly-Ash Particles in the First-Stage Turbine of an Aero-Engine
,”
Aeronaut. J.
,
125
(
1291
), pp.
1566
1586
.10.1017/aer.2021.27
32.
Casari
,
N.
,
Oliani
,
S.
,
Pinelli
,
M.
,
Suman
,
A.
, and
Carnevale
,
M.
,
2022
, “
Particle Deposition on HPT Nozzle: Full 3D Investigation and Secondary Flows Effect
,”
ASME
Paper No. GT2022-81715.10.1115/GT2022-81715
33.
Singh
,
S.
, and
Tafti
,
D. K.
,
2016
, “
Prediction of Sand Transport and Deposition in a Two-Pass Internal Cooling Duct
,”
ASME J. Eng. Gas Turbines Power
,
138
(
7
), p.
072606
.10.1115/1.4032340
34.
Bowen
,
C. P.
, and
Bons
,
J. P.
,
2022
, “
Enhancing Turbine Deposition Prediction Capability With Conjugate Mesh Morphing
,”
ASME J. Turbomach.
,
144
(
6
), p.
061013
.10.1115/1.4054282
35.
Bowen
,
C. P.
,
Libertowski
,
N. D.
,
Mortazavi
,
M.
, and
Bons
,
J. P.
,
2019
, “
Modeling Deposition in Turbine Cooling Passages With Temperature-Dependent Adhesion and Mesh Morphing
,”
ASME J. Eng. Gas Turbines Power.
,
141
(
7
), p.
071010
.10.1115/1.4042287
36.
Villain
,
F. Y. A.
,
Vadgama
,
N.
,
Gaskell
,
J. G.
,
Ireland
,
P. T.
,
McGilvray
,
M.
, and
Gillespie
,
D. R. H.
,
2022
, “
Numerical Investigation of Particle Deposition in Double Wall Effusion Cooled Systems
,”
ASME
Paper No. GT2022-81157.10.1115/GT2022-81157
37.
Agati
,
G.
,
Borello
,
D.
,
Di Gruttola
,
F.
,
Simone
,
D.
,
Rispoli
,
F.
,
Castorrini
,
A.
,
Gabriele
,
S.
, and
Venturini
,
P.
,
2022
, “
Numerical Prediction of Long Term Droplet Erosion and Washing Efficiency of an Axial Compressors Through the Use of a Discrete Mesh Morphing Approach
,”
ASME
Paper No. GT2022-83033.10.1115/GT2022-83033
38.
Biegger
,
C.
, and
Weigand
,
B.
,
2014
, “
Heat Transfer Measurements in a Swirl Chamber Using the Transient Liquid Crystal Technique
,” Proceedings of the 15th International Heat Transfer Conference, Kyoto, Japan, Aug. 10–15,
Paper No.
IHTC15-9231
.10.1615/IHTC15.hte.009231
39.
Biegger
,
C.
,
Weigand
,
B.
, and
Cabitza
,
A.
,
2013
, “
Three Components- and Tomographic-PIV Measurements of a Cyclone Cooling Flow in a Swirl Tube
,”
ASME
Paper No. GT2013-94424.10.1115/GT2013-94424
40.
Biegger
,
C.
,
Sotgiu
,
C.
, and
Weigand
,
B.
,
2015
, “
Numerical Investigation of Flow and Heat Transfer in a Swirl Tube
,”
Int. J. Therm. Sci.
,
96
, pp.
319
330
.10.1016/j.ijthermalsci.2014.12.001
41.
Laycock
,
R.
, and
Fletcher
,
T. H.
,
2016
, “
Independent Effects of Surface and Gas Temperature on Coal Fly Ash Deposition in Gas Turbines at Temperatures Up to 1400 °C
,”
ASME J. Eng. Gas Turbines Power.
,
138
(
2
), p.
021402
.10.1115/1.4031318
42.
Faeth
,
G. M.
,
1986
, “
Spray Atomization and Combustion
,”
AIAA
Report No.
1986
0136
.10.2514/6.1986-136
43.
Amsden
,
A. A.
,
O'Rourke
,
P. J.
, and
Butler
,
T. D.
,
1989
, “
KIVA-2: A Computer Program for Chemically Reactive Flows With Sprays
,” UC-96, Los Alamos National Laboratory, Los Alamos, NM, Report No.
LA-11560-MS
.10.2172/6228444
44.
Friedlander
,
S. K.
, and
Johnstone
,
H. F.
,
1957
, “
Deposition of Suspended Particles From Turbulent Gas Streams
,”
Ind. Eng. Chem.
,
49
(
7
), pp.
1151
1156
.10.1021/ie50571a039
45.
Postma
,
A. K.
, and
Schwendiman
,
L. C.
,
1960
, “
Studies in Micrometrics: I. Particle Deposition in Conduits as a Source of Error in Aerosol Sampling
,” Hanford Laboratory, Richland, WA, Report No.
HW-65308
.https://www.osti.gov/biblio/4134589
46.
Wells
,
A. C.
, and
Chamberlain
,
A. C.
,
1967
, “
Transport of Small Particles to Vertical Surfaces
,”
Br. J. Appl. Phys.
,
18
(
12
), pp.
1793
1799
.10.1088/0508-3443/18/12/317
47.
Sehmel
,
G. A.
,
1968
, “
Aerosol Deposition From Turbulent Airstreams in Vertical Conduits
,” Pacific Northwest Laboratory, Richland, WA, Report No.
BNWL-578
.https://digital.library.unt.edu/ark:/67531/metadc1028834/
48.
Liu
,
B. Y. H.
, and
Agarwal
,
J. K.
,
1974
, “
Experimental Observation of Aerosol Deposition in Turbulent Flow
,”
J. Aerosol Sci.
,
5
(
2
), pp.
145
155
.10.1016/0021-8502(74)90046-9
49.
El-Shobokshy
,
M. S.
,
1983
, “
Experimental Measurements of Aerosol Deposition to Smooth and Rough Surfaces
,”
Atmos. Environ.
,
17
(
3
), pp.
639
644
.10.1016/0004-6981(83)90138-5
50.
Shimada
,
M.
,
Okuyama
,
K.
, and
Asai
,
M.
,
1993
, “
Deposition of Submicron Aerosol Particles in Turbulent and Transitional Flow
,”
AIChE J.
,
39
(
1
), pp.
17
26
.10.1002/aic.690390104
51.
Lee
,
K. W.
, and
Gieseke
,
J. A.
,
1994
, “
Deposition of Particles in Turbulent Pipe Flows
,”
J. Aerosol Sci.
,
25
(
4
), pp.
699
709
.10.1016/0021-8502(94)90011-6
52.
Wood
,
N. B.
,
1981
, “
A Simple Method for the Calculation of Turbulent Deposition to Smooth and Rough Surfaces
,”
J. Aerosol Sci.
,
1981
,
12
(
3
), pp.
275
290
.10.1016/0021-8502(81)90127-0
53.
Brach
,
R. M.
, and
Dunn
,
P. F.
,
1992
, “
A Mathematical Model of the Impact and Adhesion of Microspheres
,”
Aerosol Sci. Technol.
,
16
(
1
), pp.
51
64
.10.1080/02786829208959537
54.
Ai
,
W. G.
,
2009
, “
Deposition of Particulate From Coal-Derived Syngas on Gas Turbine Blades Near Film Cooling Holes
,”
Ph.D. thesis
,
Brigham Young University
,
Provo, UT
.https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=2915&context=etd
55.
Barker
,
B. J.
,
2010
, “
Simulation of Coal Ash Deposition on Modern Turbine Nozzle Guide Vanes
,”
M.S. thesis
,
Ohio State University
,
Columbus, OH
.https://etd.ohiolink.edu/apexprod/rws_etd/send_file/send?accession=osu1282140369&disposition=inline
56.
Soltani
,
M.
, and
Ahmadi
,
G.
,
1994
, “
On Particle Adhesion and Removal Mechanisms in Turbulent Flows
,”
J. Adhes. Sci. Technol.
,
8
(
7
), pp.
763
785
.10.1163/156856194X00799
57.
Clarkson
,
R.
, and
Simpson
,
H.
,
2017
, “
Maximizing Airspace Use During Volcanic Eruptions: Matching Engine Durability Against Ash Cloud Occurrence
,” Report No.
STO-MP-AVT-272, NATO STO
.https://www.researchgate.net/publication/317617735_Maximising_Airspace_Use_During_Volcanic_Eruptions_Matching_Engine_Durability_against_Ash_Cloud_Occurrence
58.
Kim
,
J.
,
Dunn
,
M. G.
,
Baran
,
A. J.
,
Wade
,
D. P.
, and
Tremba
,
E. L.
,
1993
, “
Deposition of Volcanic Materials in the Hot Sections of Two Gas Turbine Engines
,”
ASME J. Eng. Gas Turbines Power
,
115
(
3
), pp.
641
651
.10.1115/1.2906754
59.
Crosby
,
J. M.
,
Lewis
,
S.
,
Bons
,
J. P.
,
Ai
,
W.
, and
Fletcher
,
T. H.
,
2008
, “
Effects of Temperature and Particle Size on Deposition in Land Based Turbines
,”
ASME J. Eng. Gas Turbines Power
,
130
(
5
), p.
051503
.10.1115/1.2903901
60.
Bonilla
,
C.
,
Webb
,
J.
,
Clum
,
C.
,
Casaday
,
B.
,
Brewer
,
E.
, and
Bons
,
J. P.
,
2012
, “
The Effect of Particle Size and Film Cooling on Nozzle Guide Vane Deposition
,”
ASME J. Eng. Gas Turbines Power
,
134
(
10
), p.
101901
.10.1115/1.4007057
61.
Whitaker
,
S. M.
,
Prenter
,
R.
, and
Bons
,
J. P.
,
2015
, “
The Effect of Freestream Turbulence on Deposition for Nozzle Guide Vanes
,”
ASME J. Turbomach.
,
137
(
12
), p.
121001
.10.1115/1.4031447
62.
Taltavull
,
C.
,
Dean
,
J.
, and
Clyne
,
T. W.
,
2016
, “
Adhesion of Volcanic Ash Particles Under Controlled Conditions and Implications for Their Deposition in Gas Turbines
,”
Adv. Eng. Mater.
,
18
(
5
), pp.
803
813
.10.1002/adem.201500371
63.
Okita
,
Y.
,
Suzuki
,
M.
,
Yamane
,
T.
,
Hasegawa
,
J.
,
Mizokami
,
Y.
, and
Nakamura
,
T.
,
2022
, “
Effect of Temperature and Velocity on Microparticle Erosion/Deposition Into Environmental-Barrier-Coated CMC for Aeroengines
,”
ASME
Paper No. 2022-79366.10.1115/2022-79366
64.
Bons
,
J. P.
,
Lo
,
C.
,
Nied
,
E.
, and
Han
,
J. X.
,
2022
, “
The Effect of Gas and Surface Temperature on Cold-Side and Hot-Side Turbine Deposition
,”
ASME
Paper No. GT2022-82027.10.1115/GT2022-82027
You do not currently have access to this content.