Abstract

A full-scale test bench for the analysis of frictional and modal behavior of nozzle guide vanes (NGV) is an advanced tool enabling high design accuracy for these components equipped with an increasing number of turbo-expanders. This subassembly is a key feature enabling operational flexibility for the expander. During the NGVs design, great attention must be paid to the natural frequencies of its kinematic chain, which are influenced by internal clearances and by friction. In this paper, the results of a testing campaign performed on an NGV assembly employing realistic blade geometry are presented together with details concerning the test bench commissioning and setup procedure. The testing campaign involves three different combinations of blade orientation and preload corresponding to typical design conditions of the expander. In addition, two bushing clearance values corresponding to different worn-out conditions were investigated. The measurements of the global friction coefficient based on actuator force detection are summarized. After that, the reconstruction of mode shapes based on experimental modal analysis is explained. The results highlight the importance of loading conditions on the actual value of friction force and their influence on blade natural frequencies. The testing campaign was used to properly validate finite element models to be used for further investigations.

References

1.
Song
,
L.
,
Li
,
J.
, and
Wen
,
K.
,
2016
, “
Aerodynamic Performance Analysis of Partial Admission Dual Row Control Stage at Different Working Conditions
,”
J. Mech. Sci. Technol.
,
30
(
1
), pp.
157
169
.10.1007/s12206-015-1219-2
2.
Cho
,
S.-Y.
,
Cho
,
C.-H.
,
Ahn
,
K.-Y.
, and
Kim
,
Y.-C.
,
2010
, “
Forces and Surface Pressure on a blade Moving in Front of the Admission Region
,”
ASME J. Fluids Eng.
,
132
(
12
), p.
121101
.10.1115/1.4002468
3.
Murugan
,
M.
,
Ghoshal
,
A.
,
Xu
,
F.
,
Hsu
,
M.-C.
,
Bazilevs
,
Y.
,
Bravo
,
L.
, and
Kerner
,
K.
,
2017
, “
Analytical Study of Articulating Turbine Rotor Blade Concept for Improved Off-Design Performance of Gas Turbine Engines
,”
ASME J. Eng. Gas Turbines Power
,
139
(
10
), p.
102601
.10.1115/1.4036359
4.
Murugan
,
M.
,
Ghoshal
,
A.
,
Bravo
,
L.
,
Xu
,
F.
,
Hsu
,
M.-C.
, and
Bazilevs
,
Y.
,
2018
, “
Articulating Axial-Flow Turbomachinery Rotor Blade for Enabling Variable Speed Gas Turbine Engine
,”
AIAA
Paper No. 2018-4522.10.2514/6.2018-4522
5.
Tamatam
,
L. R.
,
Botto
,
D.
, and
Zucca
,
S.
,
2021
, “
A Novel Test Rig to Study the Effect of Fretting Wear on the Forced Response Dynamics With a Friction Contact
,”
Nonlinear Dyn.
,
105
(
2
), pp.
1405
1426
.10.1007/s11071-021-06658-y
6.
Quaegebeur
,
S.
,
Chouvion
,
B.
, and
Thouverez
,
F.
,
2022
, “
Nonlinear Dynamic Analysis of Three-Dimensional Bladed-Disks With Frictional Contact Interfaces Based on Cyclic Reduction Strategies
,”
Int. J. Solids Struct.
,
236–237
, p.
111277
.10.1016/j.ijsolstr.2021.111277
7.
Quaegebeur
,
S.
,
Chouvion
,
B.
, and
Thouverez
,
F.
,
2021
, “
Impact of Mistuned Underplatform Dampers on the Nonlinear Vibration of Bladed Disks
,”
ASME J. Eng. Gas Turbines Power
,
143
(
12
), p.
121023
.10.1115/1.4051868
8.
Yuan
,
Y.
,
Jones
,
A.
,
Setchfield
,
R.
, and
Schwingshackl
,
C. W.
,
2021
, “
Robust Design Optimisation of Underplatform Dampers for Turbine Applications Using a Surrogate Model
,”
J. Sound Vib.
,
494
, p.
115528
.10.1016/j.jsv.2020.115528
9.
Liu
,
Y.
,
Yang
,
C.
,
Ma
,
C.
, and
Lao
,
D.
,
2014
, “
Forced Responses on a Radial Turbine With Nozzle Guide Vanes
,”
J. Therm. Sci.
,
23
(
2
), pp.
138
144
.10.1007/s11630-014-0688-4
10.
Nyssen
,
F.
,
Epureanu
,
B.
, and
Golinval
,
J. C.
,
2017
, “
Experimental Modal Identification of Mistuning in an Academic Two-Stage Drum
,”
Mech. Syst. Signal Process.
,
88
, pp.
428
444
.10.1016/j.ymssp.2016.10.030
11.
Beirow
,
B.
,
Figaschewsky
,
F.
,
Kühhorn
,
A.
, and
Bornhorn
,
A.
,
2018
, “
Modal Analyses of an Axial Turbine Blisk With Intentional Mistuning
,”
ASME J. Eng. Gas Turbines Power
,
140
(
1
), p.
012503
.10.1115/1.4037588
12.
Nied
,
H. A.
,
1980
, “
Modal Analysis of Gas Turbine Buckets Using a Digital Test System
,”
ASME J. Eng. Power
,
102
(
2
), pp.
357
368
.10.1115/1.3230262
13.
Zemp
,
A.
,
Abhari
,
R. S.
, and
Ribi
,
B.
,
2011
, “
Experimental Investigation of Forced Response Impeller Blade Vibration in a Centrifugal Compressor With Variable Inlet Guide Vanes: Part 1—Blade Damping
,”
ASME
Paper No. GT2011-46289.10.1115/GT2011-46289
14.
Robak
,
R.
, and
Szczepanik
,
M.
,
2021
, “
Modal Analysis of the Nozzle Guide Vane in Low Pressure Turbine System of Aircraft Engine
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
1037
(
1
), p.
012049
.10.1088/1757-899X/1037/1/012049
15.
Lübbe
,
B.
,
Aschenbruck
,
J.
,
Pütz
,
O.
, and
Theidel
,
M.
,
2021
, “
Design and Validation of a Large Steam Turbine End-Stage Blade to Meet Current and Future Market Demands
,”
ASME
Paper No. GT2021-59315.10.1115/GT2021-59315
16.
Szwedowicz
,
J.
,
Gibert
,
C.
,
Sommer
,
T. P.
, and
Kellerer
,
R.
,
2008
, “
Numerical and Experimental Damping Assessment of a Thin-Walled Friction Damper in the Rotating Setup With High Pressure Turbine Blades
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
012502
.10.1115/1.2771240
17.
Szwedowicz
,
J.
,
Secall-Wimmel
,
T.
, and
Dünck-Kerst
,
P.
,
2008
, “
Damping Performance of Axial Turbine Stages With Loosely Assembled Friction Bolts: The Nonlinear Dynamic Assessment
,”
ASME J. Eng. Gas Turbines Power
,
130
(
3
), p.
032505
.10.1115/1.2838998
18.
Bouchard
,
D.
,
Asghar
,
A.
,
LaViolette
,
M.
,
Allan
,
W. D. E.
, and
Woodason
,
R.
,
2014
, “
Experimental Evaluation of Service-Exposed Nozzle Guide Vane Damage in a Rolls Royce A-250 Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
136
(
10
), p.
102601
.10.1115/1.4027204
19.
Yonezawa
,
K.
,
Kagayama
,
T.
,
Takayasu
,
M.
,
Nakai
,
G.
,
Sugiyama
,
K.
,
Sugita
,
K.
, and
Umezawa
,
S.
,
2019
, “
Degradation of Aerodynamic Performance of an Intermediate-Pressure Steam Turbine Due to Erosion of Nozzle Guide Vanes and Rotor Blades
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
012602
.10.1115/1.4040566
20.
Högner
,
L.
,
Nasuf
,
A.
,
Voigt
,
P.
,
Voigt
,
M.
,
Vogeler
,
K.
,
Meyer
,
M.
,
Berridge
,
C.
, and
Goenaga
,
F.
,
2016
, “
Analysis of High Pressure Turbine Nozzle Guide Vanes Considering Geometric Variations
,”
ASME
Paper No. GT2016-57502.10.1115/GT2016-57502
21.
Hönisch
,
P.
,
Kühhorn
,
A.
, and
Beirow
,
B.
,
2011
, “
Experimental and Numerical Analyses of Radial Turbine Blisks With Regard to Mistuning
,”
ASME
Paper No. GT2011-45359.10.1115/GT2011-45359
22.
Colantoni
,
S.
,
Tripoli
,
G.
,
Gorte
,
D. P.
,
Franchini
,
F.
,
Rossetti
,
F.
, and
Spagnolo
,
M.
,
2016
, “
Twin Shaft Gas Turbine Variable Area Turbine Nozzle: Analytical Modeling and Optimization of Kinematic Chain
,”
ASME
Paper No. GT2016-57702.10.1115/GT2016-57702
23.
Bertini
,
L.
,
Guglielmo
,
A.
,
Mariotti
,
G.
, and
Acquaroli
,
F.
,
2007
, “
Analisi Modale di Pale Statoriche a Geometria Variabile per Compressori Assiali di Processo
,”
XXXVI Convegno Nazionale Associazione Italiana per L'Analisi Delle Sollecitazioni (AIAS)
, Ischia, Italy, Sept. 4–8, Paper No. 183.
24.
Chromek
,
L.
,
2016
, “
Design of the Blisk of an Aircraft Turbojet Engine and Verification of Its Resonance Free Operation
,”
Appl. Comput. Mech.
,
10
(
1
), pp.
5
14
.https://www.kme.zcu.cz/acm/acm/article/view/299
25.
Neri
,
P.
,
Bertini
,
L.
,
Santus
,
C.
, and
Guglielmo
,
A.
,
2019
, “
Generalized Safe Diagram for Mistuned Bladed Disks
,”
ASME J. Eng. Gas Turbines Power
,
141
(
11
), pp.
1
9
.10.1115/1.4045078
26.
Agnalt
,
E.
,
Østby
,
P.
,
Solemslie
,
B. W.
, and
Dahlhaug
,
O. G.
,
2018
, “
Experimental Study of a Low-Specific Speed Francis Model Runner During Resonance
,”
Shock Vib.
,
2018
, pp.
1
12
.10.1155/2018/5796875
27.
Schwitzke
,
M.
,
Schulz
,
A.
, and
Bauer
,
H.-J.
,
2013
, “
Prediction of High-Frequency Blade Vibration Amplitudes in a Radial Inflow Turbine With Nozzle Guide Vanes
,”
ASME
Paper No. GT2013-94761.10.1115/GT2013-94761
28.
Bertini
,
L.
,
Neri
,
P.
,
Santus
,
C.
, and
Guglielmo
,
A.
,
2017
, “
One Exciter per Sector Test Bench for Bladed Wheels Harmonic Response Analysis
,”
ASME
Paper No. GT2017-63628.10.1115/GT2017-63628
29.
Macoretta
,
G.
,
Monelli
,
B. D.
,
Neri
,
P.
,
Bucciarelli
,
F.
,
Checcacci
,
D.
, and
Giusti
,
E.
,
2021
, “
Full-Scale Vibration Testing of Nozzle Guide Vanes
,”
ASME
Paper No. GT2021-59356.10.1115/GT2021-59356
30.
Buchholz
,
B.
,
Gampe
,
U.
, and
Beck
,
T.
,
2012
, “
Development of a Generalized LCF-TMF Lifing Model for a Nickel-Base Superalloy
,”
ASME
Paper No. GT2012-68786.10.1115/GT2012-68786
31.
Bertini
,
L.
,
Monelli
,
B.
,
Neri
,
P.
,
Santus
,
C.
, and
Guglielmo
,
A.
,
2014
, “
Robot Assisted Modal Analysis on a Stationary Bladed Wheel
,”
ASME
Paper No. SDA2014-20636.10.1115/ESDA2014-20636
You do not currently have access to this content.