Abstract

With the heightened pressure on car manufacturers to increase the efficiency and reduce the carbon emissions of their fleets, more challenging engine operation has become a viable option. Highly dilute, boosted, and stratified charge, among others, promise engine efficiency gains and emissions reductions. At such demanding engine conditions, the spark-ignition process is a key factor for the flame initiation propagation and the combustion event. From a computational standpoint, there exist multiple spark-ignition models that perform well under conventional conditions but are not truly predictive under strenuous engine operation modes, where the underlying physics needs to be expanded. In this paper, a hybrid Lagrangian–Eulerian spark-ignition (LESI) model is coupled with different turbulence models, grid sizes, and combustion models. The ignition model, previously developed, relies on coupling Eulerian energy deposition with a Lagrangian particle evolution of the spark channel, at every time-step. The spark channel is attached to the electrodes and allowed to elongate at a speed derived from the flow velocity. The LESI model is used to simulate spark ignition in a nonquiescent crossflow environment at engine-like conditions, using converge commercial computational fluid dynamics (CFD) solver. The results highlight the consistency, robustness, and versatility of the model in a range of engine-like setups, from typical with Reynolds-averaged Navier–Stokes (RANS) and a larger grid size to high fidelity with large-eddy simulation (LES) and a finer grid size. The flame kernel growth is then evaluated against Schlieren images from an optical constant volume ignition chamber with a focus on the performance of flame propagation models, such as G-equation and thickened flame model, versus the baseline well-stirred reactor model. Finally, future development details are discussed.

References

1.
(EIA), U. S. E. I. A.
,
2021
,
Annual Energy Outlook
, U.S. Energy Information Administration, Washington, DC.
2.
Ikeya
,
K.
,
Takazawa
,
M.
,
Yamada
,
T.
,
Park
,
S.
, and
Tagishi
,
R.
,
2015
, “
Thermal Efficiency Enhancement of a Gasoline Engine
,”
SAE Int. J. Engines
,
8
(
4
), pp.
1579
1586
.10.4271/2015-01-1263
3.
Ayala
,
F. A.
, and
Heywood
,
J. B.
,
2007
, “
Lean SI Engines: The Role of Combustion Variability in Defining Lean Limits
,”
SAE
Paper No. 2007-24-0030.10.4271/2007-24-0030
4.
Colin
,
O.
, and
Truffin
,
K.
,
2011
, “
A Spark Ignition Model for Large Eddy Simulation Based on an FSD Transport Equation (ISSIM-LES)
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
3097
3104
.10.1016/j.proci.2010.07.023
5.
Keum
,
S.
,
Zhu
,
G.
,
Ronald Grover
,
J.
,
Zeng
,
W.
,
Rutland
,
C.
, and
Kuo
,
T.-W.
,
2021
, “
A Semi-Empirical Laminar-to-Turbulent Flame Transition Model Coupled With g Equation for Early Flame Kernel Development and Combustion in Spark-Ignition Engines
,”
Int. J. Engine Res.
,
22
(
2
), pp.
479
490
.10.1177/1468087419864748
6.
Thiele
,
M.
,
Selle
,
S.
,
Riedel
,
U.
,
Warnatz
,
J.
, and
Maas
,
U.
,
2000
, “
Numerical Simulation of Spark Ignition Including Ionization
,”
Proc. Combust. Inst.
,
28
(
1
), pp.
1177
1185
.10.1016/S0082-0784(00)80328-8
7.
Yang
,
X.
,
Solomon
,
A.
, and
Kuo
,
T.-W.
,
2012
, “
Ignition and Combustion Simulations of Spray-Guided Sidi Engine Using Arrhenius Combustion With Spark-Energy Deposition Model
,”
SAE
Paper No. 2012-01-0147.10.4271/2012-01-0147
8.
Givler
,
S. D.
,
Raju
,
M.
,
Pomraning
,
E.
,
Senecal
,
P. K.
,
Salman
,
N.
, and
Reese
,
R.
,
2013
, “
Gasoline Combustion Modeling of Direct and Port-Fuel Injected Engines Using a Reduced Chemical Mechanism
,”
SAE
Paper No. 2013-01-1098.10.4271/2013-01-1098
9.
Tan
,
Z.
, and
Reitz
,
R. D.
,
2006
, “
An Ignition and Combustion Model Based on the Level-Set Method for Spark Ignition Engine Multidimensional Modeling
,”
Combust. Flame
,
145
(
1–2
), pp.
1
15
.10.1016/j.combustflame.2005.12.007
10.
Duclos
,
J.-M.
, and
Colin
,
O.
,
2001
, “
(2-25) Arc and Kernel Tracking Ignition Model for 3D Spark-Ignition Engine Calculations((si-7)s. I—Engine Combustion 7-Modeling)
,”
Proc. Int. Sym. Diagn. Model. Combust. Int. Combust. Engines
,
01.204
, p.
46
.10.1299/jmsesdm.01.204.46
11.
Dahms
,
R. N.
,
Drake
,
M. C.
,
Fansler
,
T. D.
,
Kuo
,
T.-W.
, and
Peters
,
N.
,
2011
, “
Understanding Ignition Processes in Spray-Guided Gasoline Engines Using High-Speed Imaging and the Extended Spark-Ignition Model Sparkcimm. part a: Spark Channel Processes and the Turbulent Flame Front Propagation
,”
Combust. Flame
,
158
(
11
), pp.
2229
2244
.10.1016/j.combustflame.2011.03.012
12.
Dahms
,
R.
,
Fansler
,
T.
,
Drake
,
M.
,
Kuo
,
T.-W.
,
Lippert
,
A.
, and
Peters
,
N.
,
2009
, “
Modeling Ignition Phenomena in Spray-Guided Spark-Ignited Engines
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2743
2750
.10.1016/j.proci.2008.05.052
13.
Fan
,
L.
,
Li
,
G.
,
Han
,
Z.
, and
Reitz
,
R. D.
,
1999
, “
Modeling Fuel Preparation and Stratified Combustion in a Gasoline Direct Injection Engine
,”
SAE
Paper No. 1999-03-0175.10.4271/1999-01-0175
14.
Sayama
,
S.
,
Kinoshita
,
M.
,
Mandokoro
,
Y.
,
Masuda
,
R.
, and
Fuyuto
,
T.
,
2018
, “
Quantitative Optical Analysis and Modelling of Short Circuits and Blow-Outs of Spark Channels Under High-Velocity Flow Conditions
,”
SAE
Paper No. 2018-01-1728.10.4271/2018-01-1728
15.
Masuda
,
R.
,
Sayama
,
S.
,
Fuyuto
,
T.
,
Nagaoka
,
M.
,
Sugiura
,
A.
, and
Noguchi
,
Y.
,
2018
, “
Application of Models of Short Circuits and Blow-Outs of Spark Channels Under High-Velocity Flow Conditions to Spark Ignition Simulation
,”
SAE
Paper No. 2018-01-1727.10.4271/2018-01-1727
16.
Ge
,
H.
, and
Zhao
,
P.
,
2018
, “
A Comprehensive Ignition System Model for Spark Ignition Engines
,”
ASME
Paper No. ICEF2018-9574.10.1115/ICEF2018-9574
17.
Zhang
,
A.
,
Scarcelli
,
R.
,
Lee
,
S.-Y.
,
Wallner
,
T.
, and
Naber
,
J.
,
2016
, “
Numerical Investigation of Spark Ignition Events in Lean and Dilute Methane/Air Mixtures Using a Detailed Energy Deposition Model
,”
SAE
Paper No. 2016-01-0609.10.4271/2016-01-0609
18.
Richards
,
K. J.
,
Senecal
,
P. K.
, and
Pomraning
,
E.
,
2021
,
Converge 3.0
,
Convergent Science
,
Madison, WI
.
19.
Scarcelli
,
R.
,
Zhang
,
A.
,
Wallner
,
T.
,
Som
,
S.
,
Huang
,
J.
,
Wijeyakulasuriya
,
S.
,
Mao
,
Y.
,
Zhu
,
X.
, and
Lee
,
S.-Y.
,
2019
, “
Development of a Hybrid Lagrangian-Eulerian Model to Describe Spark-Ignition Processes at Engine-Like Turbulent Flow Conditions
,”
ASME J. Eng. Gas Turbines Power
,
141
(
9
), p. 091009.10.1115/1.4043397
20.
Zhu
,
X.
,
Sforza
,
L.
,
Ranadive
,
T.
,
Zhang
,
A.
,
Lee
,
S.-Y.
,
Naber
,
J.
,
Lucchini
,
T.
,
Onorati
,
A.
,
Anbarasu
,
M.
, and
Zeng
,
Y.
,
2016
, “
Experimental and Numerical Study of Flame Kernel Formation Processes of Propane-Air Mixture in a Pressurized Combustion Vessel
,”
SAE Int. J. Engines
,
9
(
3
), pp.
1494
1511
.10.4271/2016-01-0696
21.
Charlette
,
F.
,
Meneveau
,
C.
, and
Veynante
,
D.
,
2002
, “
A Power-Law Flame Wrinkling Model for Les of Premixed Turbulent Combustion Part i: Non-Dynamic Formulation and Initial Tests
,”
Combust. Flame
,
131
(
1–2
), pp.
159
180
.10.1016/S0010-2180(02)00400-5
You do not currently have access to this content.