Abstract

The preliminary design of labyrinth seals requires fast and accurate estimate of the leakage flow. While the conventional bulk flow models can quickly predict labyrinth seal discharge characteristics, they lack the accuracy and pragmatism of modern computational fluid dynamics (CFD) techniques and vice-a-versa. This paper presents a new one-dimensional loss model for straight-through gas labyrinth seals that can provide quick seal leakage flow predictions with CFD-equivalent accuracy. The present seal loss model is developed using numerical experimentation technique. Multiple CFD computations are conducted on straight-through labyrinth seal geometries for a range of pressure ratios. A distinct postprocessing methodology is developed to extract the through-flow stream tube in seal. Total pressure losses and flow area variations experienced by the flow in seal stream-tube are systematically accounted for based on the well-known knife-to-knife (K2K) methodology. Regression analyses are conducted on the trends of variations of loss and area coefficients to derive the independent pressure loss and flow area correlations. These novel correlations can predict the bulk leakage flow rate, windage flow rate, and interknife static pressures over a wide range of variations of flow and geometry parameters. Validation study shows that the leakage mass flow rate predicted by this model is accurate within ±8% of measured test data. This fast and accurate model can be employed for various applications such as in seal design-analysis workflows, for secondary air system (SAS) performance analysis, and for the rotor-dynamic and aeroelastic assessments of seals.

References

1.
di Mare
,
L.
,
Kulkarni
,
D. Y.
,
Wang
,
F.
,
Romanov
,
A.
,
Ramar
,
R.
, and
Zachariadis
,
Z. I.
,
2011
, “
Virtual Gas Turbines: Geometry and Conceptual Description
,”
ASME
Paper No. GT2011-46437. 10.1115/GT2011-46437
2.
Kulkarni
,
D. Y.
,
2013
, “
Feature-based Computational Geometry and Secondary Air System Modelling for Virtual Gas Turbines
,”
Ph.D. thesis
,
Imperial College London
, South Kensignton, London, UK.10.25560/56959
3.
Kulkarni
,
D. Y.
,
Lu
,
G.
,
Wang
,
F.
, and
di Mare
,
L.
,
2021
, “
Virtual Gas Turbines—Part I: A Top-Down Geometry Modelling Environment for Turbomachinery Application
,”
ASME
Paper No. GT2021-59719. 10.1115/GT2021-59719
4.
Kulkarni
,
D. Y.
,
Lu
,
G.
,
Wang
,
F.
, and
di Mare
,
L.
,
2022
, “
Virtual Gas Turbines—Part I: A Top-Down Geometry Modeling Environment for Turbomachinery Application
,”
ASME J. Eng. Gas Turbines Power
,
144
(
3
), pp.
1
14
.10.1115/1.4052560
5.
Wang
,
F.
,
Carnevale
,
M.
,
Lu
,
G.
,
di Mare
,
L.
, and
Kulkarni
,
D.
,
2016
, “
Virtual Gas Turbine: Pre-Processing and Numerical Simulations
,”
ASME
Paper No. GT2016-56227. 10.1115/GT2016-56227
6.
Kulkarni
,
D. Y.
, and
di Mare
,
L.
,
2021
, “
Virtual Gas Turbines—Part II: An Automated Whole-Engine Secondary Air System Model Generation
,”
ASME
Paper No. GT2021-59720. 10.1115/GT2021-59720
7.
Kulkarni
,
D. Y.
, and
di Mare
,
L.
,
2022
, “
Virtual Gas Turbines—Part II: An Automated Whole-Engine Secondary Air System Model Generation
,”
ASME J. Eng. Gas Turbines Power
,
144
(
3
), pp.
1
10
.10.1115/1.4052561
8.
Foley
,
A.
,
2001
, “
On the Performance of Gas Turbine Secondary Air Systems
,”
ASME
Paper No. 2001-GT-0199. 10.1115/2001-GT-0199
9.
Muller
,
Y.
,
2008
, “
Secondary Air System Model for Integrated Thermomechanical Analysis of a Jet Engine
,”
ASME
Paper No. GT2008-50078. 10.1115/GT2008-50078
10.
Muller
,
Y.
,
2009
, “
Integrated Fluid Network-ThermoMechanical Approach for the Coupled Analysis of a Jet Engine
,”
ASME
Paper No. GT2009-59104. 10.1115/GT2009-59104
11.
Alexiou
,
A.
, and
Mathioudakis
,
K.
,
2009
, “
Secondary Air System Component Modeling for Engine Performance Simulations
,”
ASME J. Eng. Gas Turbines Power
,
131
(
3
), pp.
1
9
.10.1115/1.3030878
12.
Childs
,
D. W.
, and
Scharrer
,
J. K.
,
1986
, “
An Iwatsubo-Based Solution for Labyrinth Seals: Comparison to Experimental Results
,”
ASME J. Eng. Gas Turbines Power
,
108
(
2
), pp.
325
331
.10.1115/1.3239907
13.
Wu
,
T.
, and
San Andres
,
L.
,
2021
, “
Gas Labyrinth Seals: Improved Prediction of Leakage in Gas Labyrinth Seals Using an Updated Kinetic Energy Carry-Over Coefficient
,”
ASME
Paper No. GT2020-14167.10.1115/GT2020-14167
14.
Childs
,
D. W.
,
1993
, “
Rotordynamic Models for Annular Gas Seals
,”
Turbomachinery Rotordynamics: Phenomena, Modeling, and Analysis
,
Wiley
,
New York
, Chap. 5, pp.
209
306
.
15.
Shapiro
,
W.
,
Chupp
,
R.
,
Holle
,
G.
, and
Scott
,
T.
,
2004
, “
Numerical, Analytical, Experimental Study of Fluid Dynamic Forces in Seals: Description of Seal Dynamics Code DYSEAL and Labyrinth Seals Code KTK
,” NASA Glenn Research Center, Cleveland, OH, Report No.
NASA/CR-2004-213199/VOL5
.https://ntrs.nasa.gov/citations/20060020785
16.
Phibel
,
R.
, and
di Mare
,
L.
,
2011
, “
Comparison Between a CFD Code and a Three-Control-Volume Model for Labyrinth Seal Flutter Predictions
,”
ASME
Paper No. GT2011-46281. 10.1115/GT2011-46281
17.
Phibel
,
R.
,
di Mare
,
L.
,
Green
,
J. S.
, and
Imregun
,
M.
,
2009
, “
Labyrinth Seal Aeroelastic Stability, a Numerical Investigation
,”
Proceedings of 12th International Symposium on Unsteady Aerodynamics, Aeroacoustics & Aeroelasticity of Turbomachines, (ISUAAAT12),
London, UK, Sept. 1–4, pp.
1
12
.
18.
Corral
,
R.
,
Greco
,
M.
, and
Vega
,
A.
,
2020
, “
Higher-Order Conceptual Model for Labyrinth Seal Flutter
,”
ASME
Paper No. GT2020-14387. 10.1115/GT2020-14387
19.
Richardet
,
G. J.
, and
Rieutord
,
P.
,
1998
, “
A Three Dimensional Fluid-Structure Coupled Analysis of Rotating Flexible Assemblies of Turbomachines
,”
J. Sound Vib.
,
209
(
1
), pp.
61
76
.10.1006/jsvi.1997.1225
20.
Martin
,
H. M.
,
1908
, “
Labyrinth Packings
,”
J. Eng.
,
85
(
10
), pp.
35
36
.
21.
Stodola
,
A.
,
1927
,
Steam and Gas Turbines
, 6th ed., Vol.
1
,
McGraw-Hill
, New York, pp.
189
194
.
22.
Gercke
,
M. J.
,
1934
, “
Flow Through Labyrinth Packing
,”
Mech. Eng.
,
56
(
11
), pp.
678
680
.
23.
Egli
,
A.
,
1935
, “
The Leakage of Steam Through Labyrinth Seals
,”
Trans. ASME
,
57
(
3
), pp.
115
122
.
24.
Hodkinson
,
B.
,
1939
, “
Estimation of Leakage Through a Labyrinth Gland
,”
Trans. ASME
,
141
(
1
), pp.
283
288
.10.1243/PIME_PROC_1939_141_037_02
25.
Kearton
,
W.
, and
Keh
,
T.
,
1952
, “
Leakage of Air Through Labyrinth Glands of Staggered Type
,”
Proc. Inst. Mech. Eng., Ser. A
,
166
(
1
), pp.
180
195
.10.1243/PIME_PROC_1952_166_022_02
26.
Kearton
,
W. J.
,
1951
, “
Internal Losses in Steam Turbines
,”
Steam Turbine Theory and Practice
, 6th ed.,
Pitman Publishing Corporation
,
Bath
, UK, Chap.
9
.
27.
Vermes
,
G.
,
1961
, “
A Fluid Mechanics Approach to the Labyrinth Seal Leakage Problem
,”
ASME J. Eng. Power
,
83
(
2
), pp.
161
169
.10.1115/1.3673158
28.
Sneck
,
H. J.
,
1974
, “
Labyrinth Seal Literature Survey
,”
ASME J. Lubr. Technol.
,
96
(
4
), pp.
579
581
.10.1115/1.3452498
29.
Jerie
,
J.
,
1948
, “
Flow Through Straight Through Labyrinth Seal
,”
Proceedings of the Seventh International Congress for Applied Mechanics
,
2(1)
, London, UK, pp.
70
82
.
30.
Yeh
,
F.
, and
Cochran
,
R.
,
1970
, “
Comparison of Experimental & Ideal Leakage Flows Through Labyrinth Seals for Very Small Pressure Differences
,” NASA Lewis Research Center, Cleveland, OH, Report No. NASA TM X-1958.
31.
Stocker
,
H. L.
,
1975
, “
Advanced Labyrinth Seal Design Performance for High Pressure Ratio Gas Turbines
,”
ASME
Paper No. 75-NA/GT-22. 10.1115/75-NA/GT-22
32.
Meyer
,
C. A.
, and
Lowrie
,
J. A. I.
,
1975
, “
The Leakage Through Straight and Slant Labyrinths and Honeycomb Seals
,”
ASME J. Eng. Power
,
97
(
4
), pp.
495
501
.10.1115/1.3446041
33.
Scharrer
,
J. K.
,
1987
, “
A Comparison of Experimental and Theoretical Results for Labyrinth Gas Seals
,” Turbomachinery Laboratories, Mechanical Engineering Department, Texas A&M University, College Station, TX, Report No.
TRC-SEAL-3-87
, pp.
1
232
.https://ntrs.nasa.gov/citations/19870008663
34.
Komotori
,
K.
, and
Mori
,
H.
,
1971
, “
Leakage Characteristics of Labyrinth Seals
,”
Proceedings of Fifth International Conference on Fluid Sealing, E4
, Conventry UK, pp.
45
63
.
35.
Komotori
,
K.
, and
Miyake
,
K.
,
1977
, “
Leakage Characteristics of Labyrinth Seals With High Rotating Speed
,”
Proceedings of the Tokyo Joint Gas Turbine Congress, (GT1977),
Tokyo, Japan, May 22–27, pp.
371
380
.
36.
Tipton
,
D. L.
,
Scott
,
T. E.
, and
Vogel
,
R. E.
,
1986
, “
Labyrinth Seal Analysis: Analytical and Experimental Development of a Design Model for Labyrinth Seals
,”
Aero Propulsion Laboratory, Air Force Wright Aeronautical Laboratories
, Wright-Patterson AFB, OH, Vol.
3
, Report No. AFWAL-TR-85-2103, pp.
1
309
.
37.
Chupp
,
R. E.
,
Holle
,
G. F.
, and
Scott
,
T. E.
,
1986
, “
Labyrinth Seal Analysis: User's Manual for Labyrinth Seal Design Model (K2K)
,”
Allison Gas Turbine, Division of General Motors Corporation
, Report No. NASA CR-2003-212367.
38.
Zimmermann
,
H.
, and
Wolff
,
K. H.
,
1987
, “
Comparison Between Empirical and Numerical Labyrinth Flow Correlations
,”
ASME
Paper No. 87-GT-86. 10.1115/87-GT-86
39.
Sturgess
,
G. J.
, and
Datta
,
P.
,
1988
, “
Application of CFD to Gas Turbine Engine Secondary Air Systems—The Labyrinth Seal
,” Proceedings of 24th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Boston, MA, July 11–13, pp.
1
12
, Paper No.
AIAA-88-3203
.10.2514/6.1988-3203
40.
Rhode
,
D. L.
, and
Sobolik
,
S. R.
,
1985
, “
Simulation of Subsonic Flow Through a Generic Labyrinth Seal Cavity
,”
ASME
Paper No. 85-GT-76. 10.1115/85-GT-76
41.
Wittig
,
S.
,
Schelling
,
U.
,
Kim
,
S.
, and
Jacobsen
,
K.
,
1987
, “
Numerical Predictions and Measurement of Discharge Coefficients in Labyrinth Seals
,”
ASME
Paper No. 87-GT-188. 10.1115/87-GT-188
42.
Wellborn
,
S. R.
,
Tolchinsky
,
I.
, and
Okiishi
,
T. H.
,
2000
, “
Modelling Shrouded Stator Cavity Flows in Axial-Flow Compressors
,”
ASME J. Turbomach.
,
122
(
1
), pp.
55
61
.10.1115/1.555427
43.
Zimmermann
,
H.
, and
Wolff
,
K. H.
,
1998
, “
Air System Correlations—Part 1: Labyrinth Seals
,”
ASME
Paper No. 98-GT-206. 10.1115/98-GT-206
44.
Moore
,
J. J.
,
2003
, “
Three-Dimensional CFD Rotordynamic Analysis of Gas Labyrinth Seals
,”
ASME J. Vib. Acoust.
,
125
(
4
), pp.
427
433
.10.1115/1.1615248
45.
Rhode
,
D. L.
, and
Allen
,
B. F.
,
2001
, “
Measurement and Visualization of Leakage Effects of Rounded Teeth Tips and Rub-Grooves on Stepped Labyrinths
,”
ASME J. Eng. Gas Turbines Power
,
123
(
3
), pp.
604
611
.10.1115/1.1377873
46.
Wang
,
W.
,
Liu
,
Y.
,
Jiang
,
P.
, and
Chen
,
H.
,
2007
, “
Numerical Analysis of Leakage Flow Through Two Labyrinth Seals
,”
J. Hydrodyn.
,
19
(
1
), pp.
107
112
.10.1016/S1001-6058(07)60035-3
47.
Soemarwoto
,
B. I.
,
Kok
,
J. C.
,
de Cock
,
K. M. J.
,
Kloosterman
,
A. B.
, and
Kool
,
G. A.
,
2007
, “
Performance Evaluation of Gas Turbine Labyrinth Seals Using Computational Fluid Dynamics
,”
ASME
Paper No. GT2007-27905. 10.1115/GT2007-27905
48.
Suryanarayanan
,
S.
, and
Morrison
,
G.
,
2009
, “
Analysis of Flow Parameters Influencing Carry-Over Factor Coefficient of Labyrinth Seals
,”
ASME
Paper No. GT2009-59245. 10.1115/GT2009-59245
49.
Allcock
,
D. C. J.
,
Ivey
,
P. C.
, and
Turner
,
J. R.
,
2002
, “
Abradable Stator Gas Turbine Labyrinth Seals: Part 2 Numerical Modelling of Differing Seal Geometries and the Construction of Second Generation Design Tool
,”
AIAA
Paper No. 2002-3937.10.2514/6.2002-3937
50.
Iudicello
,
F.
, and
Childs
,
P.
,
2009
, “
Labyrinth Seal Flow
,”
Engineering Sciences Data Unit (ESDU): Fluid Mechanics, Internal Flow (Aerospace) Series
, ESDU 09004, UK, pp.
1
59
.
51.
Fluent Inc.
,
2012
, “
Gambit Documentation
,” Fluent Inc., accessed Dec. 7, 2022, https://wp.kntu.ac.ir/mojra/CFD-gambit22tutorial.pdf
52.
Ansys Fluent
,
2012
, “
Fluent 12.1
,” Ansys Fluent, Canonsburg, PA, accessed Dec. 7, 2022, https://www.afs.enea.it/project/neptunius/docs/fluent/html/ug/main_pre.htm
53.
Morrison
,
G.
, and
Al-Ghasem
,
A.
,
2007
, “
Experimental and Computational Analysis of a Gas Compressor Windback Seal
,”
ASME
Paper No. GT2007-27986. 10.1115/GT2007-27986
54.
Cumpsty
,
N.
, and
Horlock
,
J.
,
2006
, “
Averaging Nonuniform Flow for a Purpose
,”
ASME J. Turbomach.
,
128
(
1
), pp.
120
129
.10.1115/1.2098807
55.
Koenig
,
H.
, and
Bowley
,
W.
,
1972
, “
Labyrinth Seal Analysis
,”
ASME J. Lubr. Technol.
,
94
(
1
), pp.
5
11
.10.1115/1.3451636
56.
Hawas
,
M. M.
, and
Muneer
,
T.
,
1980
, “
Computer-Aided Numerical Solution for the Flow of Compressible Fluid Through a Series of Identical Annular Orifices
,”
Energy Conserv. Manage.
,
20
(
1
), pp.
65
73
.10.1016/0196-8904(80)90029-1
57.
McGreehan
,
W.
, and
Ko
,
S.
,
1989
, “
Power Dissipation in Smooth and Honeycomb Labyrinth Seals
,”
ASME
Paper No. 89-GT-220. 10.1115/89-GT-220
58.
Millward
,
J.
, and
Edwards
,
M.
,
1996
, “
Windage Heating of Air Passing Through Labyrinth Seals
,”
ASME J. Turbomach.
,
118
(
2
), pp.
414
419
.10.1115/1.2836657
You do not currently have access to this content.