Abstract

Global decarbonization requires the increased use of zero-carbon fuels. Compared to hydrogen, ammonia is easier to store, transport, and produce. In addition, products of complete combustion of ammonia are water and nitrogen. Therefore, ammonia is an ideal green fuel for internal combustion engines. Drawbacks relate to the high ignition energy and low laminar flame speed of ammonia. This three-dimensional numerical study investigated the potential of converting existing diesel engines to ammonia spark ignition operation. Results indicated a slower kernel inception process, but the speed of the fully developed turbulent flame was enough to complete the bulk combustion process despite the lower laminar flame speed. The problem with pure ammonia operation was the reduced combustion efficiency and the high level of unburned ammonia emissions since the slow spark inception process can be compensated by a larger compression ratio. The results also suggested that emissions formation and subsequent oxidation were a more complex phenomenon. For example, lean ammonia combustion produced higher nitrogen oxides (NOX) concentrations due to the nitrogen in the fuel, despite the lower combustion temperature. Moreover, advancing spark timing reduced the NOX emissions, which was opposite to the traditional spark ignition engines. Additionally, the ammonia in engine crevices that escaped the late oxidation process was the main source of nitrous oxide (N2O) species in the exhaust gas that usually do not appear in traditional engines. Overall, all these results suggested that more fundamental research on ammonia combustion is needed to understand its use in efficient, decarbonized engines.

References

1.
Haputhanthri
,
S. O.
,
Maxwell
,
T. T.
,
Fleming
,
J.
, and
Austin
,
C.
,
2015
, “
Ammonia and Gasoline Fuel Blends for Spark Ignited Internal Combustion Engines
,”
ASME J. Energy Resour. Technol.
,
137
(
6
), p.
062201
.10.1115/1.4030443
2.
Dolan
,
R. H.
,
Anderson
,
J. E.
, and
Wallington
,
T. J.
,
2021
, “
Outlook for Ammonia as a Sustainable Transportation Fuel
,”
Sustainable Energy Fuels
,
5
(
19
), pp.
4830
4841
.10.1039/D1SE00979F
3.
Yapicioglu
,
A.
, and
Dincer
,
I.
,
2019
, “
A Review on Clean Ammonia as a Potential Fuel for Power Generators
,”
Renewable Sustainable Energy Rev.
,
103
, pp.
96
108
.10.1016/j.rser.2018.12.023
4.
Cardoso
,
J. S.
,
Silva
,
V.
,
Rocha
,
R. C.
,
Hall
,
M. J.
,
Costa
,
M.
, and
Eusébio
,
D.
,
2021
, “
Ammonia as an Energy Vector: Current and Future Prospects for Low-Carbon Fuel Applications in Internal Combustion Engines
,”
J. Cleaner Prod.
,
296
, p.
126562
.10.1016/j.jclepro.2021.126562
5.
Zamfirescu
,
C.
, and
Dincer
,
I.
,
2008
, “
Using Ammonia as a Sustainable Fuel
,”
J. Power Sources
,
185
(
1
), pp.
459
465
.10.1016/j.jpowsour.2008.02.097
6.
Christensen
,
C. H.
,
Johannessen
,
T.
,
Sørensen
,
R. Z.
, and
Nørskov
,
J. K.
,
2006
, “
Towards an Ammonia-Mediated Hydrogen Economy?
,”
Catal. Today
,
111
(
1–2
), pp.
140
144
.10.1016/j.cattod.2005.10.011
7.
Lhuillier
,
C.
,
Brequigny
,
P.
,
Contino
,
F.
, and
Mounaïm-Rousselle
,
C.
,
2021
, “
Experimental Investigation on Ammonia combustion behavior in a Spark-Ignition Engine by Means of Laminar and Turbulent Expanding Flames
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
5859
5868
.10.1016/j.proci.2020.08.058
8.
Chiong
,
M. C.
,
Chong
,
C. T.
,
Ng
,
J. H.
,
Mashruk
,
S.
,
Chong
,
W. W.
,
Samiran
,
N. A.
,
Mong
,
G. R.
, and
Valera-Medina
,
A.
,
2021
, “
Advancements of Combustion Technologies in the Ammonia-Fuelled Engines
,”
Energy Convers. Manage.
,
244
, p.
114460
.10.1016/j.enconman.2021.114460
9.
Dimitriou
,
P.
, and
Javaid
,
R.
,
2020
, “
A Review of Ammonia as a Compression Ignition Engine Fuel
,”
Int. J. Hydrogen Energy
,
45
(
11
), pp.
7098
7118
.10.1016/j.ijhydene.2019.12.209
10.
Valera-Medina
,
A.
,
Xiao
,
H.
,
Owen-Jones
,
M.
,
David
,
W. I.
, and
Bowen
,
P. J.
,
2018
, “
Ammonia for Power
,”
Prog. Energy Combust. Sci.
,
69
, pp.
63
102
.10.1016/j.pecs.2018.07.001
11.
Gray
,
J. T.
,
Dimitroff
,
E.
,
Meckel
,
N. T.
, and
Quillian
,
R. D.
,
1966
, “
Ammonia Fuel-Engine Compatibility and Combustion
,” SAE Paper No. 660156.10.4271/660156
12.
Shuai
,
S.
,
Wang
,
Z.
,
Ma
,
X.
,
Xu
,
H.
, and
He
,
X.
,
2021
, “
Low Carbon and Zero Carbon Technology Paths and Key Technologies of ICEs Under the Background of Carbon Neutrality
,”
J. Automot. Saf. Energy
,
12
(
4
), pp.
417
439
.
13.
Zamfirescu
,
C.
, and
Dincer
,
I.
,
2009
, “
Ammonia as a Green Fuel and Hydrogen Source for Vehicular Applications
,”
Fuel Process. Technol.
,
90
(
5
), pp.
729
737
.10.1016/j.fuproc.2009.02.004
14.
Liu
,
J.
, and
Dumitrescu
,
C. E.
,
2020
, “
Optical Analysis of Flame Inception and Propagation in a Lean-Burn Natural-Gas Spark-Ignition Engine With a Bowl-in-Piston Geometry
,”
Int. J. Engine Res.
,
21
(
9
), pp.
1584
1596
.10.1177/1468087418822852
15.
Liu
,
J.
,
Ulishney
,
C.
, and
Dumitrescu
,
C. E.
,
2021
, “
Optical and Numerical Investigations of Flame Propagation in a Heavy Duty Spark Ignited Natural Gas Engine
,”
ASME
Paper No. ICEF2021-67489.10.1115/ICEF2021-67489
16.
ANSYS® Forte
,
Forte Theory
, Release 17.2.,
Ansys, Inc
., San Diego, CA.
17.
Stagni
,
A.
,
Cavallotti
,
C.
,
Arunthanayothin
,
S.
,
Song
,
Y.
,
Herbinet
,
O.
,
Battin-Leclerc
,
F.
, and
Faravelli
,
T.
,
2020
, “
An Experimental, Theoretical and Kinetic-Modeling Study of the Gas-Phase Oxidation of Ammonia
,”
React. Chem. Eng.
,
5
(
4
), pp.
696
711
.10.1039/C9RE00429G
18.
Song
,
Y.
,
Marrodán
,
L.
,
Vin
,
N.
,
Herbinet
,
O.
,
Assaf
,
E.
,
Fittschen
,
C.
,
Stagni
,
A.
,
Faravelli
,
T.
,
Alzueta
,
M. U.
, and
Battin-Leclerc
,
F.
,
2019
, “
The Sensitizing Effects of NO2 and NO on Methane Low Temperature Oxidation in a Jet Stirred Reactor
,”
Proc. Combust. Inst.
,
37
(
1
), pp.
667
675
.10.1016/j.proci.2018.06.115
19.
Goldmann
,
A.
, and
Dinkelacker
,
F.
,
2018
, “
Approximation of Laminar Flame Characteristics on Premixed Ammonia/Hydrogen/Nitrogen/Air Mixtures at Elevated Temperatures and Pressures
,”
Fuel
,
224
, pp.
366
378
.10.1016/j.fuel.2018.03.030
20.
Lhuillier
,
C.
,
Brequigny
,
P.
,
Contino
,
F.
, and
Rousselle
,
C.
,
2019
, “
Combustion Characteristics of Ammonia in a Modern Spark-Ignition Engine
,” SAE Paper No. 2019-24-0237.10.4271/2019-24-0237
21.
Pearsall
,
T. J.
,
1967
,
Ammonia Application to Reciprocating Engines
,
Continental Aviation Eng. Corporation
, Warren, MI, CAE Report No. 1054.
22.
Liu
,
Z.
, and
Liu
,
J.
,
2022
, “
Machine Learning Assisted Analysis of an Ammonia Engine Performance
,”
ASME J. Energy Resour. Technol.
,
144
(
11
), p. 112307.10.1115/1.4054287
23.
Fisher
,
C. J.
,
1977
, “
A Study of Rich Ammonia/Oxygen/Nitrogen Flames
,”
Combust. Flame
,
30
, pp.
143
149
.10.1016/0010-2180(77)90060-8
24.
Li
,
J.
,
Huang
,
H.
,
Kobayashi
,
N.
,
Wang
,
C.
, and
Yuan
,
H.
,
2017
, “
Numerical Study on Laminar Burning Velocity and Ignition Delay Time of Ammonia Flame With Hydrogen Addition
,”
Energy
,
126
, pp.
796
809
.10.1016/j.energy.2017.03.085
25.
Yousefi
,
A.
,
Guo
,
H.
,
Dev
,
S.
,
Liko
,
B.
, and
Lafrance
,
S.
,
2022
, “
Effects of Ammonia Energy Fraction and Diesel Injection Timing on Combustion and Emissions of an Ammonia/Diesel Dual-Fuel Engine
,”
Fuel
,
314
, p.
122723
.10.1016/j.fuel.2021.122723
26.
Yousefi
,
A.
,
Guo
,
H.
,
Dev
,
S.
,
Lafrance
,
S.
, and
Liko
,
B.
,
2022
, “
A Study on Split Diesel Injection on Thermal Efficiency and Emissions of an Ammonia/Diesel Dual-Fuel Engine
,”
Fuel
,
316
, p.
123412
.10.1016/j.fuel.2022.123412
27.
Grannell
,
S. M.
,
Assanis
,
D. N.
,
Gillespie
,
D. E.
, and
Bohac
,
S. V.
,
2009
, “
Exhaust Emissions From a Stoichiometric, Ammonia and Gasoline Dual Fueled Spark Ignition Engine
,”
ASME
Paper No. ICES2009-76131.10.1115/ICES2009-76131
28.
Cornelius
,
W.
,
Huellmantel
,
L. W.
, and
Mitchell
,
H. R.
,
1965
, “
Ammonia as an Engine Fuel
,” SAE Paper No. 650052.10.4271/650052
29.
Westlye
,
F. R.
,
Ivarsson
,
A.
, and
Schramm
,
J.
,
2013
, “
Experimental Investigation of Nitrogen Based Emissions From an Ammonia Fueled SI-Engine
,”
Fuel
,
111
, pp.
239
247
.10.1016/j.fuel.2013.03.055
30.
Heywood
,
J. B.
,
2018
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill Education
, New York.
31.
Frigo
,
S.
, and
Gentili
,
R.
,
2013
, “
Analysis of the Behavior of a 4-Stroke Si Engine Fuelled With Ammonia and Hydrogen
,”
Int. J. Hydrogen Energy
,
38
(
3
), pp.
1607
1615
.10.1016/j.ijhydene.2012.10.114
32.
Mounaïm-Rousselle
,
C.
, and
Brequigny
,
P.
,
2020
, “
Ammonia as Fuel for Low-Carbon Spark-Ignition Engines of Tomorrow's Passenger Cars
,”
Front. Mech. Eng.
,
6
,p.
70
.10.3389/fmech.2020.00070
33.
Liu
,
J.
, and
Dumitrescu
,
C. E.
,
2019
, “
Combustion Partitioning Inside a Natural Gas Spark Ignition Engine With a Bowl-in-Piston Geometry
,”
Energy Convers. Manage.
,
183
, pp.
73
83
.10.1016/j.enconman.2018.12.118
You do not currently have access to this content.