Velocity, temperature, and composition of major species were measured in the base region of a two-dimensional, laminar methane jet diffusion flame in unconfined still air under a low-velocity jetting condition. The velocity data showed acceleration near the flame zone caused primarily by thermal expansion and buoyancy. The heat flux vectors showed substantial heat flow from the flame base to both downstream and the burner wall. The premixed zone was formed in the dark space by convective penetration of oxygen and back-diffusion of methane. The molar flux vectors of methane and oxygen at the base pointed to the opposite directions, typical of diffusion flames.

This content is only available via PDF.
You do not currently have access to this content.