A rigorous numerical solution of a theoretical model based on laminar boundary layer theory for pool film boiling heat transfer from a horizontal cylinder including the contributions of liquid subcooling and radiation from the cylinder was obtained. The numerical solution predicted accurately the experimental results of pool film boiling heat transfer from a horizontal cylinder in water with high radiation emissivity for a wide range of liquid subcooling in the range of nondimensional cylinder diameters around 1.3, where the numerical solution was applicable to the pool film boiling heat transfer from a cylinder with negligible radiation emissivity. An approximate analytical solution for the theoretical model was also derived. It was given by the sum of the pool film boiling heat transfer coefficient if there were no radiation and the radiation heat transfer coefficient for parallel plates multiplied by a nondimensional radiation parameter similar to the expression for saturated pool film boiling given by Bromley. The approximate analytical solution agreed well with the rigorous numerical solution for various liquids of widely different physical properties under wide ranges of conditions.

This content is only available via PDF.
You do not currently have access to this content.