This paper treats the buoyant convection in a layer of boron oxide, called a liquid encapsulant, which lies above a layer of a molten compound semiconductor (melt) between cold and hot vertical walls in a rectangular container with a steady vertical magnetic field B. The magnetic field provides an electromagnetic (EM) damping of the molten semiconductor which is an excellent electrical conductor but has no direct effect on the motion of the liquid encapsulant. The temperature gradient drives counter clockwise circulations in both the melt and encapsulant. These circulations alone would lead to positive and negative values of the horizontal velocity in the encapsulant and melt, respectively, near the interface. The competition between the two buoyant convections determines the direction of the horizontal velocity of the interface. For B=5 T, there is significant EM damping of the melt motion and the encapsulant drives a positive interfacial velocity and a small clockwise circulation in the melt. For a much weaker field B=0.1 T, the maximum velocity in the melt is hundreds of times larger than that of the encapsulant, thus causing nearly all the encapsulant to circulate in the clockwise direction.

1.
Hurle, D. T. J., and Series, R. W., 1994, “Use of a Magnetic Field in Melt Growth,” Hanb Cryst Growth, D. T. J. Hurle, ed., Elsevier Science Publishers, 2A, pp. 261–285.
2.
Walker, J. S., 1999, “Models of Melt Motion, Heat Transfer, and Mass Transport During Crystal Growth With Strong Magnetic Fields,” The Role of Magnetic Fields in Crystal Growth, in Prog Cryst Growth Charact Mater, K. W. Benz, ed., Elsevier Science Publishers, 38, pp. 195–213.
3.
Walker, J. S., and Ma, N., 2002, “Convective Mass Transport During Bulk Growth of Semiconductor Crystals With Steady Magnetic Fields,” Annu Rev Heat Transfer, Chang-Lin Tien, Vishwanath Prasad, and Frank Incropera, eds., Begell House, New York, 12, pp. 223–263.
4.
Bliss
,
D. F.
,
Hilton
,
R. M.
, and
Adamski
,
J. A.
,
1993
, “
MLEK Crystal Growth of Large Diameter (100) Indium Phosphide
,”
J. Cryst. Growth
,
128
, pp.
451
456
.
5.
Bliss
,
D. F.
,
Hilton
,
R. M.
,
Bachowski
,
S.
, and
Adamski
,
J. A.
,
1991
, “
MLEK Crystal Growth of (100) Indium Phosphide
,”
J. Electron. Mater.
,
20
, pp.
967
971
.
6.
Morton
,
J. L.
,
Ma
,
N.
,
Bliss
,
D. F.
, and
Bryant
,
G. G.
,
2001
, “
Diffusion-Controlled Dopant Transport During Magnetically-Stabilized Liquid-Encapsulated Czochralski Growth of Compound Semiconductor Crystals
,”
ASME J. Fluids Eng.
,
123
, pp.
893
898
.
7.
Alchaar
,
S.
,
Vasseur
,
P.
, and
Bilgen
,
E.
,
1995
, “
Natural Convection Heat Transfer in a Rectangular Enclosure With a Transverse Magnetic Field
,”
J. Heat Transfer
,
117
, pp.
668
673
.
8.
Garandet
,
J. P.
,
Alboussie`re
,
T.
, and
Moreau
,
R.
,
1992
, “
Buoyancy Driven Convection in a Rectangular Enclosure With a Transverse Magnetic Field
,”
Int. J. Heat Mass Transf.
,
35
, pp.
741
748
.
9.
Ozoe
,
H.
, and
Okada
,
K.
,
1989
, “
The Effect of the Direction of the External Magnetic Field on the Three-Dimensional Natural Convection in a Cubical Enclosure
,”
Int. J. Heat Mass Transf.
,
32
, pp.
1939
1954
.
10.
Ma
,
N.
, and
Walker
,
J. S.
,
1996
, “
Buoyant Convection During the Growth of Compound Semiconductors by the Liquid-Encapsulated Czochralski Process With an Axial Magnetic Field and With a Non-Axisymmetric Temperature
,”
ASME J. Fluids Eng.
,
118
, pp.
155
159
.
11.
Ma
,
N.
,
Walker
,
J. S.
,
Bliss
,
D. F.
, and
Bryant
,
G. G.
,
1998
, “
Forced Convection During Liquid Encapsulated Crystal Growth With an Axial Magnetic Field
,”
ASME J. Fluids Eng.
,
120
, pp.
844
850
.
12.
Hjellming
,
L. N.
, and
Walker
,
J. S.
,
1987
, “
Melt Motion in a Czochralski Crystal Puller With an Axial Magnetic Field: Motion Due to Buoyancy and Thermocapillarity
,”
J. Fluid Mech.
,
182
, pp.
335
368
.
13.
Bryant, G. G., Bliss, D. F., Leahy, D., Lancto, R., Ma, N., and Walker, J. S., 1997, “Crystal Growth of Bulk InP From Magnetically Stabilized Melts With a Cusped Field,” IEEE Proceedings of the International Conference on Indium Phosphide and Related Materials, pp. 416–419.
14.
Ma
,
N.
, and
Walker
,
J. S.
,
2001
, “
Inertia and Thermal Convection During Crystal Growth With a Steady Magnetic Field
,”
J. Thermophys. Heat Transfer
,
15
, pp.
50
54
.
You do not currently have access to this content.